Role of the Immunohistochemical ZEB1 Expression in Uterine Mesenchymal Neoplasms

2022 ◽  
pp. 106689692110701
Author(s):  
Murat Çelik ◽  
Zeliha Esin Çelik

The distinction of mesenchymal tumors of the uterus is a frequent diagnostic challenge in gynecologic pathology. Especially, distinguishing low-grade endometrial stromal sarcoma (ESS) from leiomyoma or distinguishing low-grade ESS from high-grade ESS can be difficult. Epithelial-mesenchymal transition (EMT) is a physiological and pathological process in which epithelial cells lose their morphological features, become elongated and acquire mesenchymal traits. The signaling pathway of Zinc finger E-box binding homeobox 1 (ZEB1) is one of the most significant pathways involved in the EMT process and it has a crucial role in cancer progression, metastasis, and therapy resistance. We studied a series of 69 uterine mesenchymal neoplasms including 18 endometrial stromal sarcomas (10 cases of low grade and 8 cases of high grade endometrial stromal sarcomas), 26 leiomyosarcomas (8 cases of grade 1 and 19 cases of grade 2-3 leiomyosarcomas), 15 leiomyomas, and 10 rhabdomyosarcomas, using an antibody ZEB1. We graded the leiomyosarcomas depending on the FNCLCC grading system. It was observed that leiomyosarcoma was more intensely stained with ZEB1 than leiomyoma (P < 0.001) and high-grade ESS was significantly more intensely stained with ZEB1 protein than low-grade ESS (P < 0.004). It also was observed that high-grade leiomyosarcoma was significantly more intensely stained with ZEB1 protein than low-grade leiomyosarcoma (P < 0.000). Our data suggest that Zeb1 can be used to differentiate high-grade sarcomas from their low-grade counterparts as well as benign and malignant smooth muscle tumors of the uterus.

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1419
Author(s):  
Cheng-Shuo Huang ◽  
Jar-Yi Ho ◽  
Jung-Hwa Chiang ◽  
Cheng-Ping Yu ◽  
Dah-Shyong Yu

Exosomes are essential for several tumor progression-related processes, including the epithelial–mesenchymal transition (EMT). Long non-coding RNAs (lncRNAs) comprise a major group of exosomal components and regulate the neoplastic development of several cancer types; however, the progressive role of exosomal lncRNAs in bladder cancer have rarely been addressed. In this study, we identified two potential aggressiveness-promoting exosomal lncRNAs, LINC00960 and LINC02470. Exosomes derived from high-grade bladder cancer cells enhanced the viability, migration, invasion and clonogenicity of recipient low-grade bladder cancer cells and activated major EMT-upstream signaling pathways, including β-catenin signaling, Notch signaling, and Smad2/3 signaling pathways. Nevertheless, LINC00960 and LINC02470 were expressed at significantly higher levels in T24 and J82 cells and their secreted exosomes than in TSGH-8301 cells. Moreover, exosomes derived from LINC00960 knockdown or LINC02470 knockdown T24 cells significantly attenuated the ability of exosomes to promote cell aggressiveness and activate EMT-related signaling pathways in recipient TSGH-8301 cells. Our findings indicate that exosome-derived LINC00960 and LINC02470 from high-grade bladder cancer cells promote the malignant behaviors of recipient low-grade bladder cancer cells and induce EMT by upregulating β-catenin signaling, Notch signaling, and Smad2/3 signaling. Both lncRNAs may serve as potential liquid biomarkers for the prognostic surveillance of bladder cancer progression.


2020 ◽  
Author(s):  
Cheng-Shuo Huang ◽  
Jar-Yi Ho ◽  
Jung-Hwa Chiang ◽  
Cheng-Ping Yu ◽  
Dah-Shyong Yu

Abstract Background Exosomes are essential for several tumor progression-related processes, including epithelial-mesenchymal transition (EMT). Long noncoding RNAs (lncRNAs) comprise a major group of exosomal components and regulate the neoplastic development of several cancer types; however, the progressive roles of exosomal lncRNAs in bladder cancer have rarely been addressed. In this study, we identified two potential aggressiveness-promoting exosomal lncRNAs, LINC00960 and LINC02470; we found that these lncRNAs potently induced EMT during bladder cancer progression. Methods Low-grade bladder cancer cells (TSGH-8301) were treated with conditioned media or exosomes derived from high-grade bladder cancer cells (T24 or J82), and the aggressiveness-promoting effects were evaluated. Cell viability, cell migratory/invasive activities and clonogenicity were compared to assess the response to these intercellular transmissions. Exosome-transmitted lncRNA candidates were screened with bioinformatic pipelines, and their expression levels were validated in bladder cancer cells and exosomes. Two novel lncRNAs, LINC00960 and LINC02470, were selected, and their roles and regulatory mechanisms in inducing the aggressiveness of bladder cancer cells were investigated. Results Exosomes derived from high-grade bladder cancer cells enhanced the viability, migration, invasion and clonogenicity of recipient low-grade bladder cancer cells and activated major EMT-upstream signaling pathways, including β-catenin signaling, Notch signaling, and Smad2/3 signaling pathways. Nevertheless, LINC00960 and LINC02470 were expressed at significantly higher levels in T24 and J82 cells and their secreted exosomes than in TSGH-8301 cells. Moreover, exosomes derived from LINC00960 knockdown or LINC02470 knockdown T24 cells significantly attenuated the ability of exosomes to promote cell aggressiveness and activate EMT-related signaling pathways in recipient TSGH-8301 cells. Conclusion Our findings indicate that exosome-transmitted LINC00960 and LINC02470 from high-grade bladder cancer cells promotes the malignant behaviors of recipient low-grade bladder cancer cells and induces EMT by upregulating β-catenin signaling, Notch signaling, and Smad2/3 signaling. Both lncRNAs may serve as potential liquid biomarkers for the prognostic surveillance of bladder cancer progression.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 77-96
Author(s):  
T. Jeethy Ram ◽  
Asha Lekshmi ◽  
Thara Somanathan ◽  
K. Sujathan

Cancer metastasis and therapy resistance are the foremost hurdles in oncology at the moment. This review aims to pinpoint the functional aspects of a unique multifaceted glycosylated molecule in both intracellular and extracellular compartments of a cell namely galectin-3 along with its metastatic potential in different types of cancer. All materials reviewed here were collected through the search engines PubMed, Scopus, and Google scholar. Among the 15 galectins identified, the chimeric gal-3 plays an indispensable role in the differentiation, transformation, and multi-step process of tumor metastasis. It has been implicated in the molecular mechanisms that allow the cancer cells to survive in the intravascular milieu and promote tumor cell extravasation, ultimately leading to metastasis. Gal-3 has also been found to have a pivotal role in immune surveillance and pro-angiogenesis and several studies have pointed out the importance of gal-3 in establishing a resistant phenotype, particularly through the epithelial-mesenchymal transition process. Additionally, some recent findings suggest the use of gal-3 inhibitors in overcoming therapeutic resistance. All these reports suggest that the deregulation of these specific lectins at the cellular level could inhibit cancer progression and metastasis. A more systematic study of glycosylation in clinical samples along with the development of selective gal-3 antagonists inhibiting the activity of these molecules at the cellular level offers an innovative strategy for primary cancer prevention.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1090
Author(s):  
Hassan Sadozai ◽  
Animesh Acharjee ◽  
Thomas Gruber ◽  
Beat Gloor ◽  
Eva Karamitopoulou

Tumor budding is associated with epithelial-mesenchymal transition and diminished survival in a number of cancer types including pancreatic ductal adenocarcinoma (PDAC). In this study, we dissect the immune landscapes of patients with high grade versus low grade tumor budding to determine the features associated with immune escape and disease progression in pancreatic cancer. We performed immunohistochemistry-based quantification of tumor-infiltrating leukocytes and tumor bud assessment in a cohort of n = 111 PDAC patients in a tissue microarray (TMA) format. Patients were divided based on the ITBCC categories of tumor budding as Low Grade (LG: categories 1 and 2) and High Grade (HG: category 3). Tumor budding numbers and tumor budding grade demonstrated a significant association with diminished overall survival (OS). HG cases exhibit notably reduced densities of stromal (S) and intratumoral (IT) T cells. HG cases also display lower M1 macrophages (S) and increased M2 macrophages (IT). These findings were validated using gene expression data from TCGA. A published tumor budding gene signature demonstrated a significant association with diminished survival in PDAC patients in TCGA. Immune-related gene expression revealed an immunosuppressive TME in PDAC cases with high expression of the budding signature. Our findings highlight a number of immune features that permit an improved understanding of disease progression and EMT in pancreatic cancer.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1481
Author(s):  
Chenghui Zhou ◽  
Ningbo Fan ◽  
Fanyu Liu ◽  
Nan Fang ◽  
Patrick S. Plum ◽  
...  

Esophageal cancer (EC) is an aggressive form of cancer, including squamous cell carcinoma (ESCC) and adenocarcinoma (EAC) as two predominant histological subtypes. Accumulating evidence supports the existence of cancer stem cells (CSCs) able to initiate and maintain EAC or ESCC. In this review, we aim to collect the current evidence on CSCs in esophageal cancer, including the biomarkers/characterization strategies of CSCs, heterogeneity of CSCs, and the key signaling pathways (Wnt/β-catenin, Notch, Hedgehog, YAP, JAK/STAT3) in modulating CSCs during esophageal cancer progression. Exploring the molecular mechanisms of therapy resistance in EC highlights DNA damage response (DDR), metabolic reprogramming, epithelial mesenchymal transition (EMT), and the role of the crosstalk of CSCs and their niche in the tumor progression. According to these molecular findings, potential therapeutic implications of targeting esophageal CSCs may provide novel strategies for the clinical management of esophageal cancer.


2017 ◽  
Vol 5 (5) ◽  
pp. 595-602
Author(s):  
Olfat Hammam ◽  
Mona Magdy ◽  
Amgad Anas ◽  
Ali Abdel Rahim ◽  
Mohamed Heedaya ◽  
...  

BACKGROUND: HCC in Egypt usually occurs in HCV cirrhotic livers with poor prognosis due to late diagnosis. High hnRNPK & low Claudin-4 profiles indicate Epithelial Mesenchymal Transition (EMT), malignant transformation and high-grade tumours.AIM: We studied the immunohistochemical expression of hnRNPK and Claudin-4 in HCV induced early HCC (eHCC) and adjacent liver tissue in Egyptian patients to improve eHCC detection in cirrhotic livers with better curative therapy options.METHOD: We studied the immunohistochemical expression of hnRNPK and Claudin-4 in 100 Egyptian patients resection specimens of HCV induced early HCC (eHCC) and adjacent liver tissue, in order to improve eHCC detection in cirrhotic livers, thus improving their therapeutic options.RESULTS: Early HCC grade significantly directly correlated with nuclear hnRNPK/5HPFs count and inversely correlated with Claudin-4 expression %, with a converse correlation between hnRNPK and Claudin-4. Moreover in eHCC, combined hnRNPK ³ 30/5HPFs & Claudin-4 ³ 40% significantly distinguished low grade eHCC (G1) from high grade eHCC (G2&G3), with sensitivity 97% & specificity 69.7% for hnRNPK ³ 30/5HPFs, and with sensitivity 70% & specificity 94.3% for Claudin-4 ³ 40%. Moreover in the adjacent liver, both markers expressions significantly directly correlated with each other and with METAVIR fibrosis score but not with activity. Furthermore, 58% of eHCCs showed hnRNPK ³ 30 Claudin-4 < 40% profile, indicating EMT type3, compared to 26% with hnRNPK ³ 30 Claudin-4 £ 10% profile in adjacent cirrhotic/ precirrhotic liver, with significant use of combined hnRNPK ³30/5HPFs & Claudin 4 £ 10% as eHCC prediction cut offs in cirrhosis (p < 0.05).CONCLUSION: Combination of hnRNPK and Claudin-4 can indicate early HCC development in HCV cirrhotic livers using hnRNPK ³ 30/5HPFs & Claudin-4 £ 10% cut offs. Also, combination of hnRNPK ³ 30/5HPFs & Claudin-4 ³ 40% can distinguish low grade eHCC (G1) from high grade eHCC (G2&G3).


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Hanxiao Xu ◽  
Mengke Niu ◽  
Xun Yuan ◽  
Kongming Wu ◽  
Aiguo Liu

AbstractCD44, a complex transmembrane glycoprotein, exists in multiple molecular forms, including the standard isoform CD44s and CD44 variant isoforms. CD44 participates in multiple physiological processes, and aberrant expression and dysregulation of CD44 contribute to tumor initiation and progression. CD44 represents a common biomarker of cancer stem cells, and promotes epithelial-mesenchymal transition. CD44 is involved in the regulation of diverse vital signaling pathways that modulate cancer proliferation, invasion, metastasis and therapy-resistance, and it is also modulated by a variety of molecules in cancer cells. In addition, CD44 can serve as an adverse prognostic marker among cancer population. The pleiotropic roles of CD44 in carcinoma potentially offering new molecular target for therapeutic intervention. Preclinical and clinical trials for evaluating the pharmacokinetics, efficacy and drug-related toxicity of CD44 monoclonal antibody have been carried out among tumors with CD44 expression. In this review, we focus on current data relevant to CD44, and outline CD44 structure, the regulation of CD44, functional properties of CD44 in carcinogenesis and cancer progression as well as the potential CD44-targeting therapy for cancer management.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1561
Author(s):  
Dona Sinha ◽  
Priyanka Saha ◽  
Anurima Samanta ◽  
Anupam Bishayee

Epithelial mesenchymal transition (EMT) is a complex process through which epithelial (E) cells lose their adherens junctions, transform into mesenchymal (M) cells and attain motility, leading to metastasis at distant organs. Nowadays, the concept of EMT has shifted from a binary phase of interconversion of pure E to M cells and vice versa to a spectrum of E/M transition states preferably coined as hybrid/partial/intermediate EMT. Hybrid EMT, being a plastic transient state, harbours cells which co-express both E and M markers and exhibit high tumourigenic properties, leading to stemness, metastasis, and therapy resistance. Several preclinical and clinical studies provided the evidence of co-existence of E/M phenotypes. Regulators including transcription factors, epigenetic regulators and phenotypic stability factors (PSFs) help in maintaining the hybrid state. Computational and bioinformatics approaches may be excellent for identifying new factors or combinations of regulatory elements that govern the different EMT transition states. Therapeutic intervention against hybrid E/M cells, though few, may evolve as a rational strategy against metastasis and drug resistance. This review has attempted to present the recent advancements on the concept and regulation of the process of hybrid EMT which generates hybrid E/M phenotypes, evidence of intermediate EMT in both preclinical and clinical setup, impact of partial EMT on promoting tumourigenesis, and future strategies which might be adapted to tackle this phenomenon.


2017 ◽  
Vol 474 (19) ◽  
pp. 3269-3306 ◽  
Author(s):  
Sugandha Bhatia ◽  
James Monkman ◽  
Alan Kie Leong Toh ◽  
Shivashankar H. Nagaraj ◽  
Erik W. Thompson

The concept of epithelial–mesenchymal plasticity (EMP), which describes the dynamic flux within the spectrum of phenotypic states that invasive carcinoma cells may reside, is being increasingly recognised for its role in cancer progression and therapy resistance. The myriad of events that are able to induce EMP, as well as the more recently characterised control loops, results in dynamic transitions of cancerous epithelial cells to more mesenchymal-like phenotypes through an epithelial–mesenchymal transition (EMT), as well as the reverse transition from mesenchymal phenotypes to an epithelial one. The significance of EMP, in its ability to drive local invasion, generate cancer stem cells and facilitate metastasis by the dissemination of circulating tumour cells (CTCs), highlights its importance as a targetable programme to combat cancer morbidity and mortality. The focus of this review is to consolidate the existing knowledge on the strategies currently in development to combat cancer progression via inhibition of specific facets of EMP. The prevalence of relapse due to therapy resistance and metastatic propensity that EMP endows should be considered when designing therapy regimes, and such therapies should synergise with existing chemotherapeutics to benefit efficacy. To further improve upon EMP-targeted therapies, it is imperative to devise monitoring strategies to assess the impact of such treatments on EMP-related phenomenon such as CTC burden, chemosensitivity/-resistance and micrometastasis in patients.


Sign in / Sign up

Export Citation Format

Share Document