Tibiotalar Joint Dynamics: Indications for the Syndesmotic Screw—A Cadaver Study

Foot & Ankle ◽  
1993 ◽  
Vol 14 (3) ◽  
pp. 153-158 ◽  
Author(s):  
William C. Burns ◽  
Karanvir Prakash ◽  
Robert Adelaar ◽  
Armaria Beaudoin ◽  
William Krause

Pronation-external rotation ankle injuries involve varying degrees of disruption of the syndesmotic ligaments. The loss of ligament support and alteration in the stability of the mortise have been postulated to lead to an increase in joint reactive forces and traumatic arthritis. The purpose of this study was to determine the changes in tibiotalar joint dynamics associated with syndesmotic diastasis as a result of the sequential sectioning of the syndesmotic ligaments to simulate a pronation-external rotation injury. Dissections were conducted on 10 fresh-frozen, knee-disarticulated cadaveric specimens which were then axi-ally loaded in an unconstrained manner. Tibiotalar joint forces were measured at each level of sequential sectioning of the syndesmotic ligaments, the interosseous membrane, and finally the deltoid ligament. Complete disruption of the syndesmosis with the medial structures of the ankle intact resulted in an average syndesmotic widening of 0.24 mm and no significant change in the tibiotalar contact area or the peak pressure. However, deltoid ligament strain increases with sectioning of the syndesmosis. With the addition of deltoid ligament sectioning, there was an average syndesmotic diastasis of 0.73 mm, a 39% reduction in the tibiotalar contact area, and a 42% increase in the peak pressure. In a simulated unconstrained cadaveric model of a pronation-external rotation ankle injury that results in complete disruption of the syndesmosis, if rigid anatomic medial and lateral joint fixation is obtained and the deltoid ligament complex is intact, syndesmotic screw fixation is not required to maintain the integrity of the tibiotalar joint.

2020 ◽  
Vol 5 (4) ◽  
pp. 2473011420S0030
Author(s):  
Fabian Krause ◽  
Ivan Zderic ◽  
Angela Seidel ◽  
Boyko Gueorguiev ◽  
Marc C. Attinger ◽  
...  

Category: Ankle; Basic Sciences/Biologics; Trauma Introduction/Purpose: In isolated lateral malleolar fractures of the supination-external rotation (SER) type and competent medial stabilizers (type II and III), non-operative treatment has yielded excellent outcome. With complete rupture of the deltoid ligament (SER type IV) fracture instability increases substantially. The rationale for operative treatment of SER type IV fractures is based upon good clinical results and previous biomechanical studies. A significant reduction of the ankle contact area that however is caused by an artificially forced lateralization of the talus in the ankle mortise has been demonstrated. Presumed resultant elevated joint contact stresses are thought to lead to ankle arthritis in the longterm. Methods: In 12 lower leg specimen SER type injuries were simulated by gradual bony and ligamentous destabilization of the ankle from lateral to medial according to the mechanism of injury as described by Lauge and Hansen. High-resolution pressure sensors placed in the ankle joint recorded tibio-talar pressure changes at physiologic weightbearing (700N) in three positions (plantigrade, 10° dorsiflexion and 20° plantarflexion). Results: With increasing instability changes of the ankle kinematics were seen in SER II and III fractures with the same trend also in SER IV lesions. In the plantigrade position, the medial clear space (MCS) increased significantly from an average of 2.5+-0.4mm (no fracture) to 3.9+-1.1mm (SER type IV fracture). However, the corresponding peak pressure increased only slightly from 2.6+- 0.5 mPa to 3.0+-1.4 mPa on average, and the contact area decreased slightly from 810+-42 mm2 to 735+-27mm2 on average representing a non-significant reduction of only 9% of the contact area (p=0.08) after the deep deltoid ligament was completely dissected.The comparison of the results in plantigrade and plantarflexed position revealed substantial differences for MCS, contact area and center of force. Conclusion: Under physiologic load SER type IV isolated lateral malleolar fracture with completely disrupted deep deltoid ligament led to a significant increase of the MCS, but neither to a significant decrease of the of the joint contact area nor significant increase of peak pressure. Clinical Relevance: The findings of this biomechanical study support the recently reported good clinical results of non-operative treatment of SER type II to IV fractures.


2020 ◽  
pp. 193864002095018
Author(s):  
Andreas C. Fösel ◽  
Angela Seidel ◽  
Marc C. Attinger ◽  
Ivan Zderic ◽  
Boyko Gueorguiev ◽  
...  

Background Previous biomechanical studies simulating supination–external rotation (SER) IV injuries revealed different alterations in contact area and peak pressure. We investigated joint reaction forces and radiographic parameters in an unrestrained, more physiological setup. Methods Twelve lower leg specimens were destabilized stepwise by osteotomy of the fibula (SER II) and transection of the superficial (SER IVa) and the deep deltoid ligament (SER IVb) according to the Lauge-Hansen classification. Sensors in the ankle joint recorded tibio-talar pressure changes with axial loading at 700 N in neutral position, 10° of dorsiflexion, and 20° of plantarflexion. Radiographs were taken for each step. Results Three of 12 specimen collapsed during SER IVb. In the neutral position, the peak pressure and contact area changed insignificantly from 2.6 ± 0.5 mPa (baseline) to 3.0 ± 1.4 mPa (SER IVb) ( P = .35) and from 810 ± 42 mm2 to 735 ± 27 mm2 ( P = .08), respectively. The corresponding medial clear space (MCS) increased significantly from 2.5 ± 0.4 mm (baseline) to 3.9 ± 1.1 mm (SER IVb) ( P = .028). The position of the ankle joint had a decisive effect on contact area ( P = .00), center of force ( P = .00) and MCS ( P = .01). Conclusion Simulated SER IVb injuries demonstrated radiological, but no biomechanical changes. This should be considered for surgical decision making based on MCS width on weightbearing radiographs. Levels of Evidence: Not applicable. Biomechanical study


2020 ◽  
Vol 5 (4) ◽  
pp. 2473011420S0025
Author(s):  
Zhao Hong-Mou

Category: Ankle; Basic Sciences/Biologics Introduction/Purpose: To study the effect of different degrees of distal tibial varus and valgus deformities on the tibiotalar joint contact, and to understand the role of fibular osteotomy. Methods: Eight cadaveric lower legs were used for biomechanical study. Nine conditions were included: normal ankle joint (group A), 10° varus (group B), 5° varus (group C), 5° valgus (group D), 10° valgus (group E) with fibular preserved, and 10° varus (group F), 5° varus (group G), 5° valgus (group H), and 10° valgus (group I) after fibular osteotomy. The joint contact area, contact pressure, and peak pressure were tested; and the translation of contact force center was observed. Results: The joint contact area, contact pressure, and peak pressure had no significant difference between group A and groups B to E (P>0.05). After fibular osteotomy, the contact area decreased significantly in groups F and I when compared with group A (P<0.05); the contact pressure increased significantly in groups F, H, and I when compared with group A (P<0.05); the peak pressure increased significantly in groups F and I when compared with group A (P<0.05). There were two main anterior-lateral and anterior-medial contact centers in normal tibiotalar joint, respectively; and the force center was in anterior-lateral part, just near the center of tibiotalar joint. While the fibula was preserved, the force center transferred laterally with increased varus angles; and the force center transferred medially with increased valgus angles. However, the force center transferred oppositely to the medial part with increased varus angles, and laterally with increased valgus angles after fibular osteotomy. Conclusion: Fibular osteotomy facilitates the tibiotalar contact pressure translation, and is helpful for ankle joint realignment in suitable cases.


2019 ◽  
Vol 4 (4) ◽  
pp. 2473011419S0012
Author(s):  
Arne Burssens ◽  
Nicola Krähenbühl ◽  
Hannes Vermue ◽  
Nathan Davidson ◽  
Maxwell Weinberg ◽  
...  

Category: Ankle Introduction/Purpose: Syndesmotic ankle injuries are challenging to diagnose, since current 2D imaging techniques try to quantify a 3D displacement. Therefore, our aim was two-fold: to determine displacement of sequential syndesmotic ankle injuries under various amounts of load using a 3D weightbearing CT (WBCT) and to assess the relation with current 2D imaging. Methods: Seven paired male cadaver specimens were included (tibia plateau to toe-tip) and mounted into a custom-built frame. WBCT scans were obtained after different patterns of load (0 kg or 85 kg) were combined with torque (0 Nm or 10 Nm external rotation). These conditions were repeated after each ligament condition: intact ligaments, sequential sectioning of the anterior inferior tibiofibular ligament (AITFL), deltoid ligament (DL), and interosseous membrane (IOM). CT images were segmented to obtain 3D models. These allowed quantification of displacement based on the position of computed anatomical landmarks in reference to the intact position of the fibula. A correlation analysis was performed between the 2D and 3D measurements. Results: The effect of torque caused significant displacements in all directions (P<0.05), except for shortening of the fibula (P>0.05). Weight caused a significant lateral (mean=-1.4 mm, SD=1.5) and posterior translation (mean=-0.6 mm, SD=1.8). The highest displacement consisted of external rotation (mean=-9.4°, SD=6.5) and posterior translation (mean=6.1 mm, SD=2.3) after IOL sectioning combined with torque (Fig. 1). Pearson correlation coefficients were moderate (range 0.31-0.51, P<0.05). Conclusion: Torque demonstrated superiority over weight in detecting syndesmotic ankle instability after 3D analysis. The clinical relevance of these findings can improve diagnosis by incorporating rotatory platforms during imaging and treatment strategies by providing appropriate stabilization against rotation.


Author(s):  
Ruchi D. Chande ◽  
John R. Owen ◽  
Robert S. Adelaar ◽  
Jennifer S. Wayne

The ankle joint, comprised of the distal ends of the tibia and fibula as well as talus, is key in permitting movement of the foot and restricting excessive motion during weight-bearing activities. Medial ankle injury occurs as a result of pronation-abduction or pronation-external rotation loading scenarios in which avulsion of the medial malleolus or rupture of the deltoid ligament can result if the force is sufficient [1]. If left untreated, the joint may experience more severe conditions like osteoarthritis [2]. To avoid such consequences, medial ankle injuries — specifically bony injuries — are treated with open reduction and internal fixation via the use of plates, screws, wires, or some combination thereof [1, 3–4]. In this investigation, the mechanical performance of two such devices was compared by creating a 3-dimensional model of an earlier cadaveric study [5], validating the model against the cadaveric data via finite element analysis (FEA), and comparing regions of high stress to regions of experimental failure.


1994 ◽  
Vol 15 (8) ◽  
pp. 407-414 ◽  
Author(s):  
Ken Yamaguchi ◽  
Christopher H. Martin ◽  
Scott D. Boden ◽  
Panos A. Labropoulos

A new protocol for the selected omission of transsyndesmotic fixation in Weber class C ankle fractures was prospectively evaluated in 21 consecutive patients. As proposed in a previous cadaveric study ( J. Bone Joint Surg., 71A:1548–1555, 1989), the protocol suggested that transsyndesmotic fixation was not required if (1) rigid bimalleolar fracture fixation was achieved or (2) lateral without medial fixation was obtained (i.e., with accompanying deltoid tears) if the fibular fracture was within 4.5 cm of the joint. According to this protocol, only 3 of 21 patients (14%) required transsyndesmotic fixation. Ten of the patients who did not receive transsyndesmotic fixation underwent pronation-external rotation stress radiographs in a fashion analogous to the previous cadaveric study. At 1- to 3-year follow-up, no stress (N = 10) or static view (N = 18) widening of the mortise or syndesmosis was seen in any patient, which supports (with the above guidelines) a limited, rather than routine, use of supplemental transsyndesmotic fixation. Clinical results from this prospective study seem to substantiate previously proposed biomechanical guidelines for the selected omission of transsyndesmotic fixation. Given these guidelines, transsyndesmotic fixation was unnecessary in many cases and the need can be determined before surgery by assessing the integrity of the deltoid ligament and level of the fibular fracture.


2020 ◽  
Author(s):  
Chi-Chuan Wu ◽  
Wen-Ling Yeh ◽  
Po-Cheng Lee ◽  
Ying-Chao Chou ◽  
Yung-Heng Hsu ◽  
...  

Abstract Background: Ankle injuries with the advanced pronation-external rotation (PE) type are relatively uncommon and the debate about whether the diastatic syndesmosis should be stabilized concomitantly has yet achieved a consensus. Comparison of using (Group 1) or non-using (Group 2) screw stabilization for the diastatic syndesmosis was performed retrospectively. Methods: With the 10-year period, 81 consecutive adult patients with advanced PE ankle injuries (stage 3 or 4 PE type) were treated. After malleolar fractures were internally stabilized with screws and plates, the syndesmotic stability was re-checked by external rotation and hook tests. The necessity of insertion of cortical screws to stabilize diastatic syndesmosis was decided by the individual orthopedic surgeon. The outcomes of both approaches were compared. Results: Seventy-one patients were followed for at least one year (87.7%; average, 2 years; range, 1-11 years). Group 1 had 22 patients and Group 2, 49 patients. The union rate in Group 1 was 100% (22 / 22) and in Group 2, 91.8% (45 / 49; p= 0.30). Syndesmosis re-diastasis occurred in 13.6% (3 / 22) of Group 1 and 30.6% (15 / 49) of Group 2 (p= 0.13). Satisfactory ankle function was noted in 86.4% (19 / 22) of Group 1 and 65.3% (32 / 49) of Group 2 (p= 0.07). Conclusion: Although clinical comparison cannot demonstrate statistical difference, screw stabilization of the diastatic syndesmosis may guarantee safer results. The statistical insignificance may be due to insufficient sample sizes. Clinically and theoretically, insertion of syndesmotic screws to promote ligament healing may be reasonable.


2020 ◽  
Vol 110 (5) ◽  
Author(s):  
Jingjing Zhao ◽  
Mingjuan He ◽  
Zhenhua Fang

The Lauge-Hansen classification does not cover all types of ankle injuries. The present report details three cases of exceptional fragment of the medial tibia that differed from the traditional Lauge-Hansen supination–external rotation and pronation–external rotation fracture patterns. The information obtained from this study will be helpful for conducting basic research of this condition and determining appropriate surgical approaches.


Author(s):  
Feng Wei ◽  
John W. Powell ◽  
Roger C. Haut

Numerous studies on the mechanisms of ankle injury deal with injuries to the syndesmosis and anterior ligamentous structures, but previous sectioning and clinical studies also describe the important role of the posterior talofibular ligament (PTaFL) in the ankle’s resistance to external rotation of the foot. Foot constraint may influence subtalar motion and the movement of the bones in the foot, thereby influencing the mode of injury during external rotation [1]. Stiehl et al. [2] constrain the foot with fiberglass cast tape, externally rotate the foot 90°, and produce injury to the deltoid ligament and anterior tibiofibular ligament (ATiFL) with bone fracture. In contrast, Stormont et al. [3] fix the foot in a potting alloy and conclude the primary ligamentous restraints to external rotation are the PTaFL and calcaneofibular ligament (CaFL).


2019 ◽  
Vol 4 (4) ◽  
pp. 2473011419S0001
Author(s):  
Robin P. Blom ◽  
Kaj S. Emanuel ◽  
Markus Knupp ◽  
Inger N. Sierevelt ◽  
Gino M.M.J. Kerkhoffs ◽  
...  

Category: Ankle, Trauma, Distal Tibiofibular Joint Introduction/Purpose: Ankle fractures are often associated with ligamentous injuries of the distal tibiofibular syndesmosis and the deltoid ligament. These injuries may predispose to instability, early joint degeneration and long-term ankle dysfunction. In the classic article of Boden it was made clear that injuries of the syndesmotic ligaments were of no importance in absence of a deltoid ligament rupture. Even in the presence of a deltoid ligament rupture, the interosseous membrane withstood lateralization of the talus in fixated fibula fractures up to 4.5 mm above the ankle joint. However, detection of ligamentous injuries and the need for treatment remain subject of ongoing debate. Syndesmotic injuries are often treated operatively by temporary fixation performed with positioning screws. But do isolated syndesmotic injuries need to be treated operatively at all? Methods: Ten fresh-frozen, exarticulated through the knee, human cadaveric lower limbs were tested under axial compressive loads of 50 and 700 N, simulating non-weightbearing and weightbearing conditions. All specimens were tested with different foot positions (plantigrade, dorsiflexion, inversion, eversion, and 10 Nm external rotational torque) during sequential sectioning of the syndesmotic ligaments and the deltoid ligament. We triangulated Boden’s classic findings with an active motion capture system (0.1 mm accuracy) to track the translations and rotations of the fibula relative to the tibia. Results: Isolated sectioning of the AITFL resulted in an increase of external fibula rotation up to 8.9 degrees (doubling the physiological 4.0 degrees) with an external rotation stress of 10 Nm in non-weightbearing conditions. However, weightbearing appeared somewhat protective, reducing the external rotation to 7.9 degrees. Sectioning of all syndesmotic ligaments with an intact deltoid ligament resulted in a syndesmotic widening of 0.9 mm in weightbearing conditions with a plantigrade foot. Dorsiflexion of the foot resulted in a significant increase of syndesmotic widening for all conditions of the syndesmotic ligaments. Sectioning of the deltoid ligament resulted in a significant increase of all fibula translations in all foot positions during weightbearing conditions. Conclusion: The results of our study have implications for common ligamentous ankle injuries and their treatment. In isolated syndesmotic injuries with a plantigrade foot, weightbearing seemed protective and limiting syndesmotic widening probably due to the saddle shape of the tibiotalar surface. Conservative treatment in a cast seems justifiable. External rotation stress causes the “open-book-phenomenon” in isolated AITFL injuries, especially in non-weightbearing conditions. Protection with cast or surgery is necessary. The deltoid ligament prevents lateralization of the talus but allows increased syndesmotic widening and external rotation of the fibula in dorsiflexion and external rotation stress due to the shape of the talus.


Sign in / Sign up

Export Citation Format

Share Document