Determinants of the Fatigue Life of Musculoskeletal Tissues

Author(s):  
Sean Gallagher

While the effects of physical risk factors on MSD development have been a primary focus of musculoskeletal disorder (MSD) research, it is clear that psychological stressors and certain personal characteristics (e.g., aging, sex, and obesity) are also associated with increased MSD risk. The psychological and personal characteristics listed above share a common characteristic: all are associated with disruption of the body’s neuroendocrine and immune responses resulting in an impaired healing process. An impaired healing response may result in reduced fatigue life of musculoskeletal tissues due to a diminished ability to keep pace with accumulating damage (perhaps reparable under normal circumstances), and increased vulnerability of damaged tissue to further trauma owing to the prolonged healing process. Research in engineered self-healing materials suggests that decreased healing kinetics in the presence of mechanical loading can substantially reduce the fatigue life of materials. A model of factors influencing damage accrual and healing will be presented.

2020 ◽  
pp. 096739112095509
Author(s):  
Mohd Suzeren Md Jamil ◽  
Noor Nabilah Muhamad ◽  
Wan Naqiuddin Wan Zulrushdi

The present work verified the capability of a solid state self-healing system for retarding or arresting fatigue cracks in epoxy materials subjected to cyclic loading at room temperature. A solid state self-healing material is demonstrated using a thermosetting epoxy polymer which was modified by incorporating a linear thermoplastic polydiglycidyl ether bisphenol-A (PDGEBA) as a healing agent. The stress-controlled constant amplitude (CA) tensile fatigue behavior at stress ratio, R = 0.1 and frequency 10 Hz for both the neat and the modified epoxy was investigated. Fatigue life and residual strength degradation were continuously monitored during the fatigue tests. The modified epoxy fatigue life was shown to be increased by ∼50% after healing periods. The fatigue-healing process was proven through the surface and cross-section resin morphology analyses using microscopy optic and scanning electron microscope (SEM). On the whole, the solid state self-healing system has proven to be very effective in obstructing fatigue crack propagation, effectively improved the self-healing polymeric material to achieve higher endurance limits.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jiahui He ◽  
Zixi Zhang ◽  
Yutong Yang ◽  
Fenggang Ren ◽  
Jipeng Li ◽  
...  

AbstractEndoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) are well-established therapeutics for gastrointestinal neoplasias, but complications after EMR/ESD, including bleeding and perforation, result in additional treatment morbidity and even threaten the lives of patients. Thus, designing biomaterials to treat gastric bleeding and wound healing after endoscopic treatment is highly desired and remains a challenge. Herein, a series of injectable pH-responsive self-healing adhesive hydrogels based on acryloyl-6-aminocaproic acid (AA) and AA-g-N-hydroxysuccinimide (AA-NHS) were developed, and their great potential as endoscopic sprayable bioadhesive materials to efficiently stop hemorrhage and promote the wound healing process was further demonstrated in a swine gastric hemorrhage/wound model. The hydrogels showed a suitable gelation time, an autonomous and efficient self-healing capacity, hemostatic properties, and good biocompatibility. With the introduction of AA-NHS as a micro-cross-linker, the hydrogels exhibited enhanced adhesive strength. A swine gastric hemorrhage in vivo model demonstrated that the hydrogels showed good hemostatic performance by stopping acute arterial bleeding and preventing delayed bleeding. A gastric wound model indicated that the hydrogels showed excellent treatment effects with significantly enhanced wound healing with type I collagen deposition, α-SMA expression, and blood vessel formation. These injectable self-healing adhesive hydrogels exhibited great potential to treat gastric wounds after endoscopic treatment.


Author(s):  
Peter Song ◽  
Doug Lawrence ◽  
Sean Keane ◽  
Scott Ironside ◽  
Aaron Sutton

Liquids pipelines undergo pressure cycling as part of normal operations. The source of these fluctuations can be complex, but can include line start-stop during normal pipeline operations, batch pigs by-passing pump stations, product injection or delivery, and unexpected line shut-down events. One of the factors that govern potential growth of flaws by pressure cycle induced fatigue is operational pressure cycles. The severity of these pressure cycles can affect both the need and timing for an integrity assessment. A Pressure Cycling Monitoring (PCM) program was initiated at Enbridge Pipelines Inc. (Enbridge) to monitor the Pressure Cycling Severity (PCS) change with time during line operations. The PCM program has many purposes, but primary focus is to ensure the continued validity of the integrity assessment interval and for early identification of notable changes in operations resulting in fatigue damage. In conducting the PCM program, an estimated fatigue life based on one month or one quarter period of operations is plotted on the PCM graph. The estimated fatigue life is obtained by conducting fatigue analysis using Paris Law equation, a flaw with dimensions proportional to the pipe wall thickness and the outer diameter, and the operating pressure data queried from Enbridge SCADA system. This standardized estimated fatigue life calculation is a measure of the PCS. Trends in PCS overtime can potentially indicate the crack threat susceptibility the integrity assessment interval should be updated. Two examples observed on pipeline segments within Enbridge pipeline system are provided that show the PCS change over time. Conclusions are drawn for the PCM program thereafter.


2018 ◽  
Vol 1 (1) ◽  
pp. 38 ◽  
Author(s):  
J J Ekaputri ◽  
M S Anam ◽  
Y Luan ◽  
C Fujiyama ◽  
N Chijiwa ◽  
...  

Cracks are caused by many factors. Shrinkage and external loading are the most common reason. It becomes a problem when the ingression of aggressive and harmful substance penetrates to the concrete gap. This problem reduces the durability of the structures. It is well known that self – healing of cracks significantly improves the durability of the concrete structure. This paper presents self-healing cracks of cement paste containing bentonite associated with ground granulated blast furnace slag. The self-healing properties were evaluated with four parameters: crack width on the surface, crack depth, tensile strength recovery, and flexural recovery. In combination with microscopic observation, a healing process over time is also performed. The results show that bentonite improves the healing properties, in terms of surface crack width and crack depth. On the other hand, GGBFS could also improve the healing process, in terms of crack depth, direst tensile recovery, and flexural stiffness recovery. Carbonation reaction is believed as the main mechanism, which contributes the self-healing process as well as the continuous hydration progress.


2019 ◽  
Vol 1 (1) ◽  
pp. 002-011

Oxygen is the essential element required for proper physiological function of cells, tissues and organs within healthy human body. Thanks to its intricate structure, the skin provides a multiprotective barrier against traumatic and non-traumatic injuries, but also a complex and successful self-healing process of the affected tissue. In the particular case of chronic skin wounds, such as diabetic foot ulcer wounds, there is an immediate demand to develop alternative procedures that prevent infection, speed up healing and eliminate any disrupting factor that may interfere with the therapeutic process. Given the importance of oxygen during wound healing cascade, impressive attention was oriented towards the fabrication of oxygen-releasing wound dressings.


Sign in / Sign up

Export Citation Format

Share Document