Modelling and validation of a seat suspension with rubber spring for off-road vehicles

2017 ◽  
Vol 24 (18) ◽  
pp. 4110-4121 ◽  
Author(s):  
Leilei Zhao ◽  
Yuewei Yu ◽  
Changcheng Zhou ◽  
Fuxing Yang

To improve seat performance of low-frequency vibration isolation, this paper investigates a new type of seat suspension with a hollow composite rubber spring. To better describe the real system, a nonlinear suspension model was built. Then, the model parameters were identified and validated, the results show that the model is workable and the identified parameters are acceptable. The acceleration transmissibility of the new suspension was also analyzed by test and simulation. The resonant frequencies measured are close to the simulated under different excitation amplitudes, and all the relative deviations of the resonant frequency are less than 2.0%. Finally, in order to make clear how much the new suspension is better than the traditional suspension with the coil spring, the comparison of ride comfort was conducted under different working conditions. The results show that the new suspension can more effectively attenuate the low frequency from the uneven ground, meanwhile, it can provide a more stable support so that the driver can control the vehicle effectively. The model proposed can be used to predict the performance of the new seat suspension. The new suspension and the model provide a valuable reference for broadening the type of the seat suspension and exploring the optimal performance.

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Ali Abolfathi ◽  
M. J. Brennan ◽  
T. P. Waters ◽  
B. Tang

Nonlinear isolators with high-static-low-dynamic-stiffness have received considerable attention in the recent literature due to their performance benefits compared to linear vibration isolators. A quasi-zero-stiffness (QZS) isolator is a particular case of this type of isolator, which has a zero dynamic stiffness at the static equilibrium position. These types of isolators can be used to achieve very low frequency vibration isolation, but a drawback is that they have purely hardening stiffness behavior. If something occurs to destroy the symmetry of the system, for example, by an additional static load being applied to the isolator during operation, or by the incorrect mass being suspended on the isolator, then the isolator behavior will change dramatically. The question is whether this will be detrimental to the performance of the isolator and this is addressed in this paper. The analysis in this paper shows that although the asymmetry will degrade the performance of the isolator compared to the perfectly tuned case, it will still perform better than the corresponding linear isolator provided that the amplitude of excitation is not too large.


2020 ◽  
Vol 51 (4-5) ◽  
pp. 63-76 ◽  
Author(s):  
Chun Cheng ◽  
Yan Hu ◽  
Ran Ma

To attenuate the low-frequency vibration transmitted to the driver, a nonlinear seat suspension with high-static-low-dynamic stiffness is designed. First, the force and stiffness characteristics are derived. The nonlinear suspension can achieve the quasi-zero stiffness at the static equilibrium position when the structural parameters are properly designed. Then, a car-seat-human coupled model which consists of a quarter car model, a seat suspension, and a 4 degree-of-freedom human model is established to predict the biodynamic response of the driver. Finally, the isolation performance of the high-static-low-dynamic stiffness seat suspension under two typical road excitations is evaluated separately based on the numerical method. The effects of stiffness ratio, damping ratio, and vehicle speed on the ride comfort are investigated. The results showed that the nonlinear seat suspension outperforms the equivalent linear counterpart and can achieve the best ride comfort when the quasi-zero stiffness condition is satisfied.


2012 ◽  
Vol 605-607 ◽  
pp. 443-447
Author(s):  
Zi Yue Zhao ◽  
Zhi Hong Fan ◽  
Jing Jun Zhang ◽  
Zi Qiang Xia

In this paper, in order to study the effect of nonlinear suspension system, a nonlinear dynamic model considering nonlinearity of suspension is built and another model with the respective of linear suspension system is developed which is for comparison. Then the dynamic equation of the model is set up. The simulation is accomplished through MATLAB/SIMULINK. It is found that the band-limited white noise module can simulate the power spectral density of road surface well. Finally, numerical simulation results indicates that an appropriate nonlinear suspension model fits reality better than a linear one and using relative control can provide the best ride comfort.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Qiao Sun ◽  
Robert A. Wolkow ◽  
Mark Salomons

The extreme sensitivity of a scanning probe microscope demands an exceptional noise cancellation device that could effectively cut off a wide range of vibration noise. Existing commercial devices, although excellent in canceling high frequency noise, commonly leave low frequency vibration unattenuated. We design an add-on active stage that can function together with a standalone existing active stage. The objective is to provide a higher level of noise cancellation by lowering the overall system cut-off frequency. This study is concerned with the theoretical aspects of the coupling characteristics involved in stacking independently designed stages together to form a two-stage isolator. Whether an add-on stage would pose a stability threat to the existing stage needs to be addressed. In addition, we explore the use of coupling effects to optimize the performance of the overall system.


2021 ◽  
Vol 88 (5) ◽  
Author(s):  
Mingkai Zhang ◽  
Jinkyu Yang ◽  
Rui Zhu

Abstract In this research, we aim to combine origami units with vibration-filtering metastructures. By employing the bistable origami structure as resonant unit cells, we propose metastructures with low-frequency vibration isolation ability. The geometrical nonlinearity of the origami building block is harnessed for the adjustable stiffness of the metastructure’s resonant unit. The quantitative relationship between the overall stiffness and geometric parameter of the origami unit is revealed through the potential energy analysis. Both static and dynamic experiments are conducted on the bistable origami cell and the constructed beam-like metastructure to verify the adjustable stiffness and the tunable vibration isolation zone, respectively. Finally, a two-dimensional (2D) plate-like metastructure is designed and numerically studied for the control of different vibration modes. The proposed origami-based metastructures can be potentially useful in various engineering applications where structures with vibration isolation abilities are appreciated.


2019 ◽  
Vol 9 (16) ◽  
pp. 3326 ◽  
Author(s):  
Zhao ◽  
Wang

As a major device for reducing vibration and protecting passengers, the low-frequency vibration control performance of commercial vehicle seating systems has become an attractive research topic in recent years. This article reviews the recent developments in active seat suspensions for vehicles. The features of active seat suspension actuators and the related control algorithms are described and discussed in detail. In addition, the vibration control and reduction performance of active seat suspension systems are also reviewed. The article also discusses the prospects of the application of machine learning, including artificial neural network (ANN) control algorithms, in the development of active seat suspension systems for vibration control.


2015 ◽  
Vol 645-646 ◽  
pp. 995-1003
Author(s):  
Xin Hua Mao ◽  
Qing He ◽  
Ting Ting Huang

For effectively harvesting the broadband and low-frequency vibration energies in real environment, a micro bistable piezoelectric generator, without containing magnet, is designed. On the basis of analysis the nonlinear behavior of the stiffness, damping and the electromechanical coupling coefficient about the bistable vibration system, a precise mechanical-electric transfer model is built. The output characteristic of the piezoelectric generator is simulated and tested. The results showed that the piezoelectric generator can effectively harvest the broadband and low frequency vibration energies. And the output voltage can meet the electricity demand of a wireless sensor network node. The structure of the piezoelectric generator does not contain magnets, and it is easy to realize miniaturization and integration.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Zhenhua Yan ◽  
Bing Zhu ◽  
Xuefei Li ◽  
Guoqiang Wang

Low-frequency vibrations (0.5–5 Hz) that harm drivers occur in off-road vehicles. Thus, researchers have focused on finding methods to effectively isolate or control low-frequency vibrations. A novel nonlinear seat suspension structure for off-road vehicles is designed, whose static characteristics and seat-human system dynamic response are modeled and analyzed, and experiments are conducted to verify the theoretical solutions. Results show that the stiffness of this nonlinear seat suspension could achieve real zero stiffness through well-matched parameters, and precompression of the main spring could change the nonlinear seat suspension performance when a driver’s weight changes. The displacement transmissibility curve corresponds with the static characteristic curve of nonlinear suspension, where the middle part of the static characteristic curve is gentler and the resonance frequency of the displacement transmissibility curve and the isolation minimum frequency are lower. Damping should correspond with static characteristics, in which the corresponding suspension damping value should be smaller given a flatter static characteristic curve to prevent vibration isolation performance reduction.


Sign in / Sign up

Export Citation Format

Share Document