A Newtonian mechanics formulation for the vibration of translating and rotating elastic continua

2019 ◽  
Vol 25 (10) ◽  
pp. 1639-1652 ◽  
Author(s):  
Robert L Lowe ◽  
Christopher G Cooley

In this paper, we present a Newtonian mechanics formulation for modeling the vibration of a convecting elastic continuum, i.e., a system characterized by mean kinematic translation or rotation with small superposed vibrations. The proposed Newtonian approach complements customary energy-based techniques and serves as a convenient means to validate and physically interpret their results. We develop the equations of motion and matching conditions in a continuum mechanics setting with respect to a stationary inertial reference frame. Interaction of the convecting continuum with discrete space-fixed elements (e.g., springs and dampers) is enabled, without introducing time-dependent coefficients, through the use of Eulerian kinematics and kinetics. Kinematic discontinuities inherent in these interactions are accommodated by employing a global (or integral) form of balance of linear momentum applied to a space-fixed control volume. A generalized form of Navier's equation of elastic wave propagation is derived, with unsteady, Coriolis, centripetal, and convective contributions to the inertia. The resulting formulation is applied to a broad class of translating and rotating systems – including spinning rings, axially moving strings and beams, and general three-dimensional elastic structures – and shown to successfully reconcile with existing energy-based derivations in the literature.

1994 ◽  
Vol 98 (976) ◽  
pp. 207-214 ◽  
Author(s):  
C. Q. Lin ◽  
K. Pahlke

Abstract This paper is part of a DLR research programme to develop a three-dimensional Euler code for the calculation of unsteady flow fields around helicopter rotors in forward flight. The present research provides a code for the solution of Euler equations around aerofoils in arbitrary unsteady motion. The aerofoil is considered rigid in motion, and an O-grid system fixed to the moving aerofoil is generated once for all flow cases. Jameson's finite volume method using Runge-Kutta time stepping schemes to solve Euler equations for steady flow is extended to unsteady flow. The essential steps of this paper are the determination of inviscid governing equations in integral form for the control volume varying with time in general, and its application to the case in which the control volume is rigid with motion. The implementation of an implicit residual averaging with variable coefficients allows the CFL number to be increased to about 60. The general description of the code, which includes the discussions of grid system, grid fineness, farfield distance, artificial dissipation, and CFL number, is given. Code validation is investigated by comparing results with those of other numerical methods, as well as with experimental results of an Onera two-bladed rotor in non-lifting flight. Some numerical examples other than periodic motion, such as angle-of-attack variation, Mach number variation, and development of pitching oscillation from steady state, are given in this paper.


1995 ◽  
Vol 23 (3) ◽  
pp. 215-228 ◽  
Author(s):  
Patrick Bar-Avi ◽  
Itzhak Porat

Axially moving materials, such as high-speed magnetic tapes, belts and band saws, have been discussed since 1897. In this paper the nonlinear differential equations, which describe the string's plane motion (lateral and longitudinal), are developed by two different methods: direct method (Newton's second law) and Hamilton's principle. The control volume method is presented briefly. The equations are stated in two different coordinates systems. Comparison between the equations developed by the different methods and coordinates systems shows that they are the same. The coupling between the lateral and longitudinal vibrations is of the second order, hence linearization (to the first order) leads to uncoupled equations.


Author(s):  
Wei Zhang ◽  
Yan-Qi Liu ◽  
Li-Hua Chen ◽  
Ming-Hui Yao

Periodic and chaotic space oscillations of an axially moving viscoelastic belt with one-to-one internal resonance are investigated for the first time. The Kelvin viscoelastic model is introduced to describe the viscoelastic property of the belt material. The external damping and internal damping of the material for the axially moving viscoelastic belt are considered simultaneously. The nonlinear governing equations of motion of the axially moving viscoelastic belt for the in-plane and out-of-plane are derived by the extended Hamilton’s principle. The method of multiple scales and Galerkin’s approach are applied directly to the partial differential governing equations of motion to obtain four-dimensional averaged equation under the case of 1:1 internal resonance and primary parametric resonance of the first order modes for the in-plane and out-of-plane oscillations. Numerical method is used to investigate periodic and chaotic space motions of the axially moving viscoelastic belt. The results of numerical simulation demonstrate that there exist periodic, period-2, period-3, period-4, period-6, quasiperiodic and chaotic motions of the axially moving viscoelastic belt.


2012 ◽  
Vol 79 (5) ◽  
Author(s):  
Sinan Filiz ◽  
Bekir Bediz ◽  
L. A. Romero ◽  
O. Burak Ozdoganlar

Vibration behavior of structures with parallelepiped shape—including beams, plates, and solids—are critical for a broad range of practical applications. In this paper we describe a new approach, referred to here as the three-dimensional spectral-Tchebychev (3D-ST) technique, for solution of three-dimensional vibrations of parallelepipeds with different boundary conditions. An integral form of the boundary-value problem is derived using the extended Hamilton’s principle. The unknown displacements are then expressed using a triple expansion of scaled Tchebychev polynomials, and analytical integration and differentiation operators are replaced by matrix operators. The boundary conditions are incorporated into the solution through basis recombination, allowing the use of the same set of Tchebychev functions as the basis functions for problems with different boundary conditions. As a result, the discretized equations of motion are obtained in terms of mass and stiffness matrices. To analyze the numerical convergence and precision of the 3D-ST solution, a number of case studies on beams, plates, and solids with different boundary conditions have been conducted. Overall, the calculated natural frequencies were shown to converge exponentially with the number of polynomials used in the Tchebychev expansion. Furthermore, the natural frequencies and mode shapes were in excellent agreement with those from a finite-element solution. It is concluded that the 3D-ST technique can be used for accurate and numerically efficient solution of three-dimensional parallelepiped vibrations under mixed boundary conditions.


Author(s):  
Kevin Orloske ◽  
Robert G. Parker

This paper addresses the stability and vibration characteristics of three-dimensional steady motions (equilibrium configurations) of translating beams undergoing boundary misalignment. System modeling and equilibrium solutions for bending in two planes, torsion, and extension were presented in a previous work [1]. Stability is determined by linearizing the equations of motion about a steady motion and calculating the eigenvalues using a finite-difference discretization. For the case of no misalignment, the calculated eigenvalues are compared to known values. When the beam is misaligned, the system initially enters a planar configuration and the results indicate that the planar equilibria lose stability after the first bifurcation point. Eigenvalue behavior of the planar equilibria after the first bifurcation point is shown to be strongly influenced by translation speed. Eigenvalue behavior about non-planar equilibria and vibration modes about selected equilibria are also presented.


Author(s):  
Mergen H. Ghayesh ◽  
Marco Amabili ◽  
Hamed Farokhi

The geometrically nonlinear dynamics of a three-dimensional axially moving beam is investigated numerically for both sub and supercritical regimes. Hamilton’s principle is employed to derive the equations of motion for in-plane and out-of plane displacements. The Galerkin scheme is applied to the nonlinear partial differential equations of motion yielding a set of second-order nonlinear ordinary differential equations with coupled terms. The pseudo-arclength continuation technique is employed to solve the discretized equations numerically so as to obtain the nonlinear resonant responses; direct time integration is conducted to obtain the bifurcation diagrams of the system. The results are presented in the form of the frequency-response curves, bifurcation diagrams, time histories, phase-plane portraits, and fast Fourier transforms for different sets of system parameters.


2009 ◽  
Vol 37 (2) ◽  
pp. 62-102 ◽  
Author(s):  
C. Lecomte ◽  
W. R. Graham ◽  
D. J. O’Boy

Abstract An integrated model is under development which will be able to predict the interior noise due to the vibrations of a rolling tire structurally transmitted to the hub of a vehicle. Here, the tire belt model used as part of this prediction method is first briefly presented and discussed, and it is then compared to other models available in the literature. This component will be linked to the tread blocks through normal and tangential forces and to the sidewalls through impedance boundary conditions. The tire belt is modeled as an orthotropic cylindrical ring of negligible thickness with rotational effects, internal pressure, and prestresses included. The associated equations of motion are derived by a variational approach and are investigated for both unforced and forced motions. The model supports extensional and bending waves, which are believed to be the important features to correctly predict the hub forces in the midfrequency (50–500 Hz) range of interest. The predicted waves and forced responses of a benchmark structure are compared to the predictions of several alternative analytical models: two three dimensional models that can support multiple isotropic layers, one of these models include curvature and the other one is flat; a one-dimensional beam model which does not consider axial variations; and several shell models. Finally, the effects of internal pressure, prestress, curvature, and tire rotation on free waves are discussed.


2018 ◽  
Vol 64 (5) ◽  
pp. 645-650
Author(s):  
Olga Kravets ◽  
Yelena Romanova ◽  
Oleg Kozlov ◽  
Mikhail Nechushkin ◽  
A. Gavrilova ◽  
...  

We present our results of 3D CT/MRI brachytherapy (BT) planning in 115 patients with locally advanced cervical cancer T2b-3bN0-1M0. The aim of this study was to assess the differences in the visualization of tumor target volumes and risk organs during the 3D CT/MRI BT. The results of the study revealed that the use of MRI imaging for dosimetric planning of dose distribution for a given volume of a cervical tumor target was the best method of visualization of the soft tissue component of the tumor process in comparison with CT images, it allowed to differentially visualize the cervix and uterine body, directly the tumor volume. Mean D90 HR-CTV for MRI was 32.9 cm3 versus 45.9 cm3 for CT at the time of first BT, p = 0.0002, which is important for local control of the tumor process. The contouring of the organs of risk (bladder and rectum) through MRI images allows for more clearly visualizing the contours, which statistically significantly reduces the dose load for individual dosimetric planning in the D2cc control volume, і.є. the minimum dose of 2 cm3 of the organ of risk: D2cc for the bladder was 24.3 Gy for MRI versus 34.8 Gy on CT (p = 0.045); D2cc for the rectum - 18.7 Gy for MRI versus 26.8 Gy for CT (p = 0.046). This is a prognostically important stage in promising local control, which allows preventing manifestation of radiation damage.


1991 ◽  
Vol 24 (6) ◽  
pp. 171-177 ◽  
Author(s):  
Zeng Fantang ◽  
Xu Zhencheng ◽  
Chen Xiancheng

A real-time mathematical model for three-dimensional tidal flow and water quality is presented in this paper. A control-volume-based difference method and a “power interpolation distribution” advocated by Patankar (1984) have been employed, and a concept of “separating the top-layer water” has been developed to solve the movable boundary problem. The model is unconditionally stable and convergent. Practical application of the model is illustrated by an example for the Pearl River Estuary.


2021 ◽  
Vol 9 (1) ◽  
pp. 76
Author(s):  
Duoc Nguyen ◽  
Niels Jacobsen ◽  
Dano Roelvink

This study aims at developing a new set of equations of mean motion in the presence of surface waves, which is practically applicable from deep water to the coastal zone, estuaries, and outflow areas. The generalized Lagrangian mean (GLM) method is employed to derive a set of quasi-Eulerian mean three-dimensional equations of motion, where effects of the waves are included through source terms. The obtained equations are expressed to the second-order of wave amplitude. Whereas the classical Eulerian-mean equations of motion are only applicable below the wave trough, the new equations are valid until the mean water surface even in the presence of finite-amplitude surface waves. A two-dimensional numerical model (2DV model) is developed to validate the new set of equations of motion. The 2DV model passes the test of steady monochromatic waves propagating over a slope without dissipation (adiabatic condition). This is a primary test for equations of mean motion with a known analytical solution. In addition to this, experimental data for the interaction between random waves and a mean current in both non-breaking and breaking waves are employed to validate the 2DV model. As shown by this successful implementation and validation, the implementation of these equations in any 3D model code is straightforward and may be expected to provide consistent results from deep water to the surf zone, under both weak and strong ambient currents.


Sign in / Sign up

Export Citation Format

Share Document