Seismic vibration suppression of a building with an adaptive nonsingular terminal sliding mode control

2020 ◽  
Vol 26 (23-24) ◽  
pp. 2136-2147 ◽  
Author(s):  
Normaisharah Mamat ◽  
Fitri Yakub ◽  
Sheikh Ahmad Zaki Shaikh Salim ◽  
Mohamed Sukri Mat Ali

This study investigates the control performance of a structural building system during a seismic scenario using an adaptive nonsingular terminal sliding mode control. To realize the structural integrity of a building, it is necessary to equip the building with a structural control device. This research is focused on a hybrid control device that has excellent characteristics of passive and active control devices and implemented in a three degree-of-freedom system. The system, actuator, and controllers are designed by using the mathematical model developed in MATLAB/Simulink. The input excitation to the structure is taken from the El Centro earthquake that occurred in the 1940s with a magnitude of 6.9 Mw and the Southern Sumatra earthquake that occurred in 2007 with a magnitude of 8.4 Mw. Adaptive nonsingular terminal sliding mode control is the new proposed control strategy to be applied in structural control field is investigated in terms of controller performance in suppressing the vibrations, and then, compared with sliding mode control and fuzzy logic controller strategies. Sliding mode control is chosen to be compared with adaptive nonsingular terminal sliding mode control because of its advantages of robust performance, whereas fuzzy logic controller is chosen because of its intelligent control base. The effectiveness of the proposed controllers is evaluated based on the displacement response, performance indices, and the probability of building damage. The results have shown that the new proposed controller, an adaptive nonsingular terminal sliding mode control, reduced vibrations better and has superior performance compared with fuzzy logic controller and sliding mode control.

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Gao ◽  
Xiuping Chen ◽  
Haibo Du ◽  
Song Bai

For the position tracking control problem of permanent magnet linear motor, an improved fast continuous-time nonsingular terminal sliding mode control algorithm based on terminal sliding mode control method is proposed. Specifically, first, for the second-order model of position error dynamic system, a new continuous-time fast terminal sliding surface is introduced and an improved continuous-time fast terminal sliding mode control law is proposed. Then rigorous theoretical analysis is provided to demonstrate the finite-time stability of the closed-loop system by using the Lyapunov function. Finally, numerical simulations are given to verify the effectiveness and advantages of the proposed fast nonsingular terminal sliding mode control method.


2021 ◽  
Author(s):  
Normaisharah Mamat ◽  
Mohd Fauzi Othman ◽  
Mohd Fitri Mohd Yakub

Abstract Building structures are prone to damage due to natural disasters, and this challenges structural engineers to design safer and more robust building structures. This study is conducted to prevent these consequences by implementing a control strategy that can enhance a building's stability and reduce the risk of damage. Therefore, to realize the structural integrity of a building, a hybrid control device is equipped with control strategies to enhance robustness. The control strategy proposed in this study is adaptive nonsingular terminal sliding mode control (ANTSMC). ANTSMC is an integrated controller of radial basis function neural network (RBFNN) and nonsingular terminal sliding mode control (NTSMC), which has a fast dynamic response, finite-time convergence, and the ability to enhance the control performance against a considerable uncertainty. The proposed controller is designed based on the sliding surface and the control law. The building with a two-degree-of-freedom (DOF) system is designed in Matlab/Simulink and validated with the experimental work connected to the LMSTest.Lab software. The performance of this controller is compared with those of the terminal sliding mode control (TSMC) and NTSMC in terms of the displacement response, sliding surface, and the probability of damage. The result showed that the proposed controller, ANTSMC can suppress vibrations up to 46%, and its percentage probability of complete damage is 15% from the uncontrolled structure. Thus, these findings are imperative towards increasing the safety level in building structures and occupants, and reducing damage costs in the event of a disaster.


Sign in / Sign up

Export Citation Format

Share Document