A beam–ring circular truss antenna restrained by means of the negative speed feedback procedure

2021 ◽  
pp. 107754632110036
Author(s):  
Ashraf T EL-Sayed Taha ◽  
Hany S Bauomy

The present article contemplates the nonlinear powerful exhibitions of affecting dynamic vibration controller over a beam–ring structure for demonstrating the circular truss antenna exposed to mixed excitations. The dynamic controller comprises the included negative speed input added to the framework’s idea. By using the statue, Hamilton, the nonlinear fractional differential administering conditions of movement and the limit conditions have inferred for the shaft ring structure. Through Galerkin’s method, the nonlinear partial differential equations referred to overseeing the movement of the shaft ring structure have diminished to a coupled normal differential equations extending the nonlinearities square terms. Multiple time scales have helped in acquiring (getting) the four-dimensional averaged equations for measuring the primary and 1:2 internal resonances. This article’s controlled assessment is useful for controlling the nonlinear vibrations of the considered framework. Likewise, the controller dispenses with the framework’s oscillations in a brief time frame. The demonstrations of the numerous coefficients and the framework directed at the examined resonance case have been determined. Using MATLAB 7.0 programs has aided in completing the simulation results. At last, the numerical outcomes displayed an admirable concurrence with the methodical ones. A comparison with recently available articles has also indicated good results through using the presented controller.

Author(s):  
Tao Liu ◽  
Wei Zhang ◽  
Yan Zheng ◽  
Yufei Zhang

Abstract This paper is focused on the internal resonances and nonlinear vibrations of an eccentric rotating composite laminated circular cylindrical shell subjected to the lateral excitation and the parametric excitation. Based on Love thin shear deformation theory, the nonlinear partial differential equations of motion for the eccentric rotating composite laminated circular cylindrical shell are established by Hamilton’s principle, which are derived into a set of coupled nonlinear ordinary differential equations by the Galerkin discretization. The excitation conditions of the internal resonance is found through the Campbell diagram, and the effects of eccentricity ratio and geometric papameters on the internal resonance of the eccentric rotating system are studied. Then, the method of multiple scales is employed to obtain the four-dimensional nonlinear averaged equations in the case of 1:2 internal resonance and principal parametric resonance-1/2 subharmonic resonance. Finally, we study the nonlinear vibrations of the eccentric rotating composite laminated circular cylindrical shell systems.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Hamid Moeenfard ◽  
Shorya Awtar

The objective of this work is to analytically study the nonlinear dynamics of beam flexures with a tip mass undergoing large deflections. Hamilton's principle is utilized to derive the equations governing the nonlinear vibrations of the cantilever beam and the associated boundary conditions. Then, using a single mode approximation, these nonlinear partial differential equations are reduced to two coupled nonlinear ordinary differential equations. These equations are solved analytically using the multiple time scales perturbation technique. Parametric analytical expressions are presented for the time domain response of the beam around and far from its internal resonance state. These analytical results are compared with numerical ones to validate the accuracy of the proposed analytical model. Compared with numerical solution methods, the proposed analytical technique shortens the computational time, offers design insights, and provides a broader framework for modeling more complex flexure mechanisms. The qualitative and quantitative knowledge resulting from this effort is expected to enable the analysis, optimization, and synthesis of flexure mechanisms for improved dynamic performance.


1973 ◽  
Vol 40 (1) ◽  
pp. 121-126 ◽  
Author(s):  
S. Atluri

This investigation treats the large amplitude transverse vibration of a hinged beam with no axial restraints and which has arbitrary initial conditions of motion. Nonlinear elasticity terms arising from moderately large curvatures, and nonlinear inertia terms arising from longitudinal and rotary inertia of the beam are included in the nonlinear equation of motion. Using a Galerkin variational method and a modal expansion, the problem is reduced to a system of coupled nonlinear ordinary differential equations which are solved for arbitrary initial conditions, using the perturbation procedure of multiple-time scales. The general response and frequency-amplitude relations are derived theoretically. Comparison with previously published results is made.


Author(s):  
Fengxia Wang ◽  
Anil K. Bajaj

Multiple time scales technique has long been an important method for the analysis of weakly nonlinear systems. In this technique, a set of multiple time scales are introduced that serve as the independent variables. The evolution of state variables at slower time scales is then determined so as to make the expansions for solutions in a perturbation scheme uniform in natural and slower times. Normal form theory has also recently been used to approximate the dynamics of weakly nonlinear systems. This theory provides a way of finding a coordinate system in which the dynamical system takes the “simplest” form. This is achieved by constructing a series of near-identity nonlinear transformations that make the nonlinear systems as simple as possible. The “simplest” differential equations obtained by the normal form theory are topologically equivalent to the original systems. Both methods can be interpreted as nonlinear perturbations of linear differential equations. In this work, the equivalence of these two methods for constructing periodic solutions is proven, and it is explained why some studies have found the results obtained by the two techniques to be inconsistent.


Author(s):  
Fengxia Wang

This paper discusses the stability of a periodically time-varying, spinning blade with cubic geometric nonlinearity. The modal reduction method is adopted to simplify the nonlinear partial differential equations to the ordinary differential equations, and the geometric stiffening is approximated by the axial inertia membrane force. The method of multiple time scale is employed to study the steady state motions, the corresponding stability and bifurcation for such a periodically time-varying rotating blade. The backbone curves for steady-state motions are achieved, and the parameter map for stability and bifurcation is developed. Illustration of the steady-state motions is presented for an understanding of rotational motions of the rotating blade.


Author(s):  
Victoria I. Michalowski ◽  
Denis Gerstorf ◽  
Christiane A. Hoppmann

Aging does not occur in isolation, but often involves significant others such as spouses. Whether such dyadic associations involve gains or losses depends on a myriad of factors, including the time frame under consideration. What is beneficial in the short term may not be so in the long term, and vice versa. Similarly, what is beneficial for one partner may be costly for the other, or the couple unit over time. Daily dynamics between partners involving emotion processes, health behaviors, and collaborative cognition may accumulate over years to affect the longer-term physical and mental health outcomes of either partner or both partners across adulthood and into old age. Future research should move beyond an individual-focused approach to aging and consider the importance of and interactions among multiple time scales to better understand how, when, and why older spouses shape each other’s aging trajectories, both for better and for worse.


2014 ◽  
Vol 518 ◽  
pp. 60-65 ◽  
Author(s):  
Yury Rossikhin ◽  
Marina Shitikova

Dynamic behaviour of a nonlinear plate embedded in a fractional derivative viscoelastic medium and subjected to the conditions of the internal resonances two-to-one has been studied by Rossikhin and Shitikova in [1]. Nonlinear equations, the linear parts of which occur to be coupled, were solved by the method of multiple time scales. A new approach proposed in this paper allows one to uncouple the linear parts of equations of motion of the plate, while the same method, the method of multiple time scales, has been utilized for solving nonlinear equations. The new approach enables one to find a new type of the internal resonanse, i.e., one-to-one-to-two, as well as to solve the problems of vibrations of thin bodies more efficiently.


Author(s):  
Matteo Strozzi ◽  
Francesco Pellicano ◽  
Antonio Zippo

In this paper, the effect of the geometry on the nonlinear vibrations of functionally graded (FGM) cylindrical shells is analyzed. The Sanders-Koiter theory is applied to model the nonlinear dynamics of the system in the case of finite amplitude of vibration. The shell deformation is described in terms of longitudinal, circumferential and radial displacement fields. Simply supported boundary conditions are considered. The displacement fields are expanded by means of a double mixed series based on harmonic functions for the circumferential variable and Chebyshev polynomials for the longitudinal variable. In the linear analysis, after spatial discretization, mass and stiff matrices are computed, natural frequencies and mode shapes of the shell are obtained. In the nonlinear analysis, the three displacement fields are re-expanded by using approximate eigenfunctions obtained by the linear analysis; specific modes are selected. The Lagrange equations reduce nonlinear partial differential equations to a set of ordinary differential equations. Numerical analyses are carried out in order to characterize the nonlinear response of the shell. A convergence analysis is carried out to determine the correct number of the modes to be used. The analysis is focused on determining the nonlinear character of the response as the geometry of the shell varies.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ali Akgül ◽  
Adem Kılıçman ◽  
Mustafa Inc

The fractional complex transformation is used to transform nonlinear partial differential equations to nonlinear ordinary differential equations. The improved ()-expansion method is suggested to solve the space and time fractional foam drainage and KdV equations. The obtained results show that the presented method is effective and appropriate for solving nonlinear fractional differential equations.


2019 ◽  
Vol 13 (11) ◽  
pp. 116
Author(s):  
Hegagi Mohamed Ali ◽  
Ismail Gad Ameen

In this work, we execute a generally new analytical technique, the modified generalized Mittag-Leffler function method (MGMLFM) for solving nonlinear partial differential equations containing fractional derivative emerging in predator-prey biological population dynamics system. This dynamics system are given by a set of fractional differential equations in the Caputo sense. A new solution is constructed in a power series. The stability of equilibrium points is studied. Moreover, numerical solutions for different cases are given and the methodology is displayed. We conducted a comparing between the results obtained by our method with the results obtained by other methods to illustrate the reliability and effectiveness of our main results.


Sign in / Sign up

Export Citation Format

Share Document