Long-term stability of ganciclovir in polypropylene containers at room temperature

2017 ◽  
Vol 25 (2) ◽  
pp. 303-308 ◽  
Author(s):  
Nicolas Guichard ◽  
Pascal Bonnabry ◽  
Serge Rudaz ◽  
Sandrine Fleury-Souverain

Purpose Ganciclovir is increasingly provided by hospital pharmacy production unit in a ready-to-use form, in order to improve the safety of healthcare workers and the efficiency of the organisation. The objective of this study was to develop a stability-indicating method to assay ganciclovir and determine the stability of ganciclovir in syringes (5 mg/mL) and infusion bags (0.25 and 5 mg/mL) at two different temperatures. Method Ganciclovir solutions (0.25 mg/mL and 5 mg/mL) in 0.9% sodium chloride were prepared in 50 mL polypropylene syringes or 100 mL polypropylene infusion bags and stored at 2–8℃ and 23–27℃. The chemical stability was measured using a stability-indicating Ultra High Performance Liquid Chromatography coupled to mass spectrometry method. Physical stability was assessed by visual inspection. Results No significant loss of ganciclovir under any of the tested conditions was observed in this study. All solutions remained clear through the study period. Conclusion All tested formulations remained stable for at least 185 days independently of container type, temperature or concentration studied.

2020 ◽  
Vol 77 (9) ◽  
pp. 681-689
Author(s):  
Sixtine Gilliot ◽  
Morgane Masse ◽  
Frédéric Feutry ◽  
Christine Barthélémy ◽  
Bertrand Décaudin ◽  
...  

Abstract Purpose Midazolam is a benzodiazepine derivative commonly used in intensive care units to control sedation. Its use requires dilution of a 5-mg/mL commercial solution to a target concentration of 1 mg/mL. A study was conducted to evaluate the stability of diluted ready-to-use 1-mg/mL midazolam solutions over 365 days when stored in cyclic olefin copolymer vials or polypropylene syringes. Methods A specific stability-indicating high-performance liquid chromatography coupled with UV detection method was developed for midazolam hydrochloride and validated for selectivity, linearity, sensitivity, precision, and accuracy. Three storage conditions were tested: –20°C ± 5°C, 5°C ± 3°C, and 25°C ± 2°C at 60% ± 5% relative humidity. Half of the vials were stored upside down to test for the absence of interaction between midazolam and the stopper. Particle contamination, sterility, and pH were assessed. Results The limit of stability was set at 90% of the initial concentration. After 1 year’s storage at –20°C and 5°C, concentrations remained superior to 90% under all storage conditions. At 25°C, stability was maintained up to day 90 in syringes (mean [SD], 92.71% [1.43%]) and to day 180 in upright and upside-down vials (92.12% [0.15%] and 91.57% [0.15%], respectively). No degradation products were apparent, no variations in pH values were detected, and containers retained their sterility and conformity with regard to any specific contamination during the study. Conclusion The evaluated 1-mg/mL midazolam solution was stable over a 1-year period when stored at a refrigerated (5°C) or frozen (–20°C) temperature in both vials and syringes; with storage at 25°C, the stability duration was lower. The preparation of ready-to-use midazolam solutions by a hospital pharmacy is compatible with clinical practice and could help to decrease risks inherent in dilution in care units.


2019 ◽  
Vol 55 (3) ◽  
pp. 188-192
Author(s):  
M. L. Colsoul ◽  
A. Breuer ◽  
N. Goderniaux ◽  
J. D. Hecq ◽  
L. Soumoy ◽  
...  

Background and Objective: Infusion containing lorazepam is used by geriatric department to limit anxiety disorders in the elderly. Currently, these infusions are prepared according to demand by the nursing staff, but the preparation in advance in a centralized service could improve quality of preparation and time management. The aim of this study was to investigate the long-term stability of this infusion in polypropylene syringes stored at 5 ± 3°C. Then, results obtained were compared with stability data of lorazepam in syringes stored at room temperature, glass bottles at 5 ± 3°C, and glass bottles at room temperature. Method: Eight syringes and 6 bottles of infusion were prepared by diluting 1 mL lorazepam 4 mg in 23 mL of NaCl 0.9% under aseptic conditions. Five syringes and 3 bottles were stored at 5 ± 3°C and 3 syringes and 3 bottles were stored at room temperature for 30 days. During the storage period, particle appearance or color change were periodically checked by visual and microscope inspection. Turbidity was assessed by measurements of optical density (OD) at 3 wavelengths (350 nm, 410 nm, 550 nm). The stability of pH was also evaluated. The lorazepam concentrations were measured at each time point by high-performance liquid chromatography with ultraviolet detector at 220 nm. Results: Solutions were physically unstable in syringes at 5 ± 3°C after 4 days: crystals and a drop of OD at 350 nm were observed. However, pH was stable. After 2 days, solutions were considered as chemically unstable because a loss of lorazepam concentration higher than 10% was noticed: the lower 1-sided confidence limit at 95% was below 90% of the initial concentration. To assess temperature and polypropylene influence, results were compared with those obtained for syringes at room temperature and bottles at 5 ± 3°C and room temperature. Precipitation, drop of OD at 350 nm, and chemical instability were observed in all conditions. Conclusion: Solutions of lorazepam were unstable after 2 days in syringes at 5 ± 3°C. Preparation in advance appears, therefore, not possible for the clinical use. Storage conditions (temperature and form) do not improve the stability.


2020 ◽  
Vol 11 (4) ◽  
pp. 7740-7746
Author(s):  
China Babu D ◽  
Madhusudhana Chetty C ◽  
Mastanamma SK

A simple, convenient, specific, precise and highly conventional stability-indicating ultra-performance liquid chromatographic‑ diode array method was developed for the quantification of Apalutamide in human plasma. The Phenomenex Luna (100x4.6x5µ) column was used for apalutamide separation. The mobile phase was composed with 5 mM ammonium fumarate and acetonitrile in the ratio of 15:85 v/v, and buffer pH 3.5 was adjusted with glacial acetic acid and detected at 345 nm. The Apalutamide‑D3 used as internal standard and K2‑EDTA used as a coagulant. The liquid-liquid extraction process used for extraction of drug from human plasma with tert butyl methyl ether. The retention times of Apalutamide and Apalutamide D3 (ISTD) was 1.48 min & 1.97 min, respectively. The assay of the method was validated in human plasma in the concentration range from 307.26-200013.87 pg/ml with the accuracy and precision ranging from 3.86 to 4.87. Recovery studies were found to be 103.79%, 90.93% & 96.83% for HQC, MQC and LQC respectively. The stability of the drug was evaluated in human plasma with different conditions of the auto-sampler, freeze-thaw, bench top, short term and long term stability studies were performed. The method was proved as highly sensitive and selective for the quantification of Apalutamide and determined at the picogram level. There was no matrix effect observed and proved as a stability-indicating method. 


2017 ◽  
Vol 74 (24) ◽  
pp. 2060-2064 ◽  
Author(s):  
Paul O. Lewis ◽  
David B. Cluck ◽  
Jessica D. Huffman ◽  
Amanda P. Ogle ◽  
Stacy D. Brown

Abstract Purpose Development of a stability-indicating high-performance liquid chromatography (HPLC) method for pyrimethamine analysis, with subsequent application of that method to assess the 90-day stability of a pyrimethamine suspension compounded from bulk USP-grade pyrimethamine powder, is described. Methods A stability-indicating method of HPLC with ultraviolet detection specific to pyrimethamine was developed according to pharmacopeial recommendations and validated. The method was applied to investigate the stability of a 2-mg/mL pyrimethamine suspension in a vehicle consisting of Ora-Plus and Ora-Sweet (Perrigo) over a period of 90 days. Three replicate test preparations were stored at room temperature or refrigerated at 4.3–5.2 °C, and samples were analyzed in duplicate immediately after preparation and on study days 1, 2, 4, 7, 10, 14, 21, 30, 48, 60, 75, and 90. Results The 2-mg/mL suspension of pyrimethamine in Ora-Plus and Ora-Sweet retained 90–110% of the labeled potency to 90 days at both temperature ranges. However, color changes in the samples stored at room temperature observed at day 60 indicated that a beyond-use date less than 90 days from the preparation date should be specified when the suspension is to be stored at room temperature. Conclusion The study demonstrated that USP-grade pyrimethamine powder can be formulated as a 2-mg/mL suspension in a vehicle of Ora-Plus and Ora-Sweet and is stable when stored at room temperature and when refrigerated, in amber plastic bottles, for 48 and 90 days, respectively.


2020 ◽  
Vol 16 ◽  
Author(s):  
Hedvig Arnamo ◽  
Michel Hillebrand ◽  
Alwin Huitema ◽  
Bastiaan Nuijen ◽  
Hilde Rosing ◽  
...  

Aim/Background: In this study, a stability-indicating method of the anticancer agent cabazitaxel was developed and validated. This method will be used to determine the chemical stability of commercially available concentrate-solvent mixture cabazitaxel (Jevtana®) to examine the possibility of multi-dosing from the same product vial after storage. The impossibility to re-use leftovers today is contributing to an unnecessary and significant financial waste. Methods: A forced degradation study of cabazitaxel was performed under different conditions to produce degradation products. Acidic, basic, oxidation, heat, and ultraviolet (UV) light conditions were tested. The method to determine the stability was developed so that potential degradation products would be shown in the UV spectra after separation from cabazitaxel with a C18 column in a high-performance liquid chromatography (HPLC) system. The only degradation product occurring during storage in room temperature and ambient light was identified by accurate mass Orbitrap Mass Spectrometry. Results/Conclusion: A stability-indicating method for cabazitaxel (Jevtana ®) concentrate-solvent mixture has been developed. We demonstrated that this method can be applied to stability studies with the purpose of multi-dosing cabazitaxel from a chemical/physical stability perspective within the tested period of time and conditions. As an addition, the only naturally occurring degradation product found has been identified and a degradation reaction has been suggested.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Emily Henkel ◽  
Rebecca Vella ◽  
Kieran Behan ◽  
David Austin ◽  
Peter Kruger ◽  
...  

Abstract Background There are scenarios where pre-mixing and infusing analgesic and anaesthetic agents as a single intravenous (IV) solution is highly desirable; however, it is important to ensure the agents are compatible when mixed. As such, the long-term stability of a remifentanil-propofol mixture, and means of improving this, were assessed across a range of remifentanil concentrations, diluents, and time points. Methods Remifentanil was reconstituted with ultrapure water, 0.9% saline, 20% saline, or 8.4% sodium bicarbonate solution (the latter two chosen for their pH characteristics, rather than their use in pharmaceutical reconstitution) and then mixed with propofol (1%) or further diluted with water to derive concentrations of 10–50 μg mL− 1. Remifentanil and propofol concentrations were determined initially and then periodically for up to 24 h using high performance liquid chromatography (HPLC). Mass spectrometry (MS) was used to detect degradation products in solutions containing 30 μg mL− 1 of remifentanil. Statistical analysis was performed using ANOVA and Student’s t-test, with a significance value of 0.05. Results Isolated remifentanil (pH < 4) and propofol (pH 7.35) did not degrade significantly when reconstituted with water or saline solution over 24 h, while remifentanil reconstituted with sodium bicarbonate degraded significantly (P < 0.001, pH 8.65). Mixing with propofol substantially increased the pH of the mixture and resulted in significant remifentanil degradation for all reconstitution solutions used, while propofol remained stable (pH 6.50). The amount of degradation product detected in samples containing isolated remifentanil and a mixture of the drugs was proportional to the remifentanil degradation observed. Conclusions Remifentanil stability is affected by both the reconstitution solution used and when mixed with propofol, with pH appearing to be a contributing factor to degradation. If the pH of the solution and concentration of remifentanil are correctly controlled, e.g. through the use of a more acidic diluent, an admixture of remifentanil and propofol may be useful clinically.


2020 ◽  
pp. 107815522095044
Author(s):  
Mélanie Closset ◽  
Nicolas Goderniaux ◽  
Marie-Lise Colsoul ◽  
Laura Soumoy ◽  
Benoit Bihin ◽  
...  

Background Patients undergoing chemotherapeutic treatment are currently treated by a concomittent infusion of alizapride and ondansetron. To optimise the procedure and to ensure patients’ safety, the admixture could be prepared in advance by the Centralized Intravenous Additive Service (CIVAS) provided that the stability of the mixture has been proven beforhand to reduce nausea and vomiting. Aim of the study: to evaluate the long-term stability of an admixture of alizapride 0.926 mg/l and ondansetron 0.074 mg/ml in 0.9% sodium chloride polyolefin bags stored at 5 ± 3°C. Material and methods Five polyolefin bags containing 100 ml sodium chloride 0.9% added with 4 ml alizapride (100 mg) and 4 ml ondansetron (8 mg) were prepared in aseptic conditions and stored at 5 ± 3°C for 56 days. Periodically, physical stability tests were performed including: pH measurements, optical density measurements at 350, 410 and 550 nm to track turbidity appearance, visual and microscopical inspections to detect colour changes, precipitation, microaggregates or crystals. The concentrations of the solutions were measured by High Performance Liquid Chromatography coupled with an UV detector. Results There was no change in pH and optical densities during the study period. Visual and microscopical inspections didn’t show any change of colour neither precipitation, microaggregate or crystal. The alizapride and ondansetron concentrations remained stable over the study. Conclusion The admixture of alizapride and ondansetron in 0.9% sodium chloride solution polyolefin bags is physicochemically stable up to 56 days at 5 ± 3°C. These results support the possibility of preparing the solutions in advance by a CIVAS.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Pavlina Holcapkova ◽  
Zuzana Kolarova Raskova ◽  
Martina Hrabalikova ◽  
Alexandra Salakova ◽  
Jan Drbohlav ◽  
...  

This work describes novel alternative for extraction of bacteriocin nisin from a whey fermentation media and its stabilization by using polyethylene glycol as matrix with high practical applicability. This product was compared with commercially available nisin product stabilized by sodium chloride and nisin extracted and stabilized by using ammonium sulfate and polysorbate 80. The stability of samples was tested by means of long-term storage at −18, 4, 25, and 55°C up to 165 days. The nisin content in the samples was determined by high-performance liquid chromatography and electrophoresis. In addition, effect of whey fortification with lactose on nisin production and antibacterial activity studied against Staphylococcus aureus was tested. Results show that stabilization by polyethylene glycol provides enhanced nisin activity at 55°C after 14 days and long-term stability at 25°C with keeping antibacterial activity.


1979 ◽  
Vol 42 (04) ◽  
pp. 1135-1140 ◽  
Author(s):  
G I C Ingram

SummaryThe International Reference Preparation of human brain thromboplastin coded 67/40 has been thought to show evidence of instability. The evidence is discussed and is not thought to be strong; but it is suggested that it would be wise to replace 67/40 with a new preparation of human brain, both for this reason and because 67/40 is in a form (like Thrombotest) in which few workers seem to use human brain. A �plain� preparation would be more appropriate; and a freeze-dried sample of BCT is recommended as the successor preparation. The opportunity should be taken also to replace the corresponding ox and rabbit preparations. In the collaborative study which would be required it would then be desirable to test in parallel the three old and the three new preparations. The relative sensitivities of the old preparations could be compared with those found in earlier studies to obtain further evidence on the stability of 67/40; if stability were confirmed, the new preparations should be calibrated against it, but if not, the new human material should receive a calibration constant of 1.0 and the new ox and rabbit materials calibrated against that.The types of evidence available for monitoring the long-term stability of a thromboplastin are discussed.


Chemosensors ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 155
Author(s):  
Yan Su ◽  
Ting Liu ◽  
Caiqiao Song ◽  
Aiqiao Fan ◽  
Nan Zhu ◽  
...  

As an essential electrolyte for the human body, the potassium ion (K+) plays many physiological roles in living cells, so the rapid and accurate determination of serum K+ is of great significance. In this work, we developed a solid-contact ion-selective electrode (SC-ISE) using MoS2/Fe3O4 composites as the ion-to-electron transducer to determine serum K+. The potential response measurement of MoS2/Fe3O4/K+-ISE shows a Nernst response by a slope of 55.2 ± 0.1 mV/decade and a low detection limit of 6.3 × 10−6 M. The proposed electrode exhibits outstanding resistance to the interference of O2, CO2, light, and water layer formation. Remarkably, it also presents a high performance in potential reproducibility and long-term stability.


Sign in / Sign up

Export Citation Format

Share Document