Effect of Medium Composition and Kinetic Studies on Extracellular and Intracellular Production of L-asparaginase from Pectobacterium carotovorum

2010 ◽  
Vol 16 (2) ◽  
pp. 115-125 ◽  
Author(s):  
S. Arrivukkarasan ◽  
M. Muthusivaramapandian ◽  
R. Aravindan ◽  
T. Viruthagiri

Microbial L-asparaginase occupies a prominent place among biocatalysts owing to their ability to catalyze the reaction that hydrolyze the asparagine molecule. Effect of various medium components on the production of L-asparaginase in submerged fermentation by Pectobacterium carotovorum was studied for optimal nutrient requirements. Six different media compositions were tested for the L-asparaginase production keeping fermentation conditions constant at temperature 30 °C, initial pH 7.0 and agitation speed of 120 rpm. Maximum intracellular and extracellular L-asparaginase activity was obtained in the medium containing tryptone, yeast extract, monosodium glutamate, K2HPO4 and L-asparagine. These medium components were further optimized by central composite experimental design using response surface methodology. Maximum intracellular and extracellular L-asparaginase activity of 2.282 U/mL and 0.587 U/mL were obtained respectively at the late logarithmic phase in optimized media. Unstructured kinetic models were used to describe the cell growth and product formation kinetics. The unstructured models predicted the cell growth and product formation profile accurately with high coefficient of determination.

2013 ◽  
Vol 781-784 ◽  
pp. 647-652
Author(s):  
Shuang Gao ◽  
Ling Hua Zhang ◽  
Qing Chen ◽  
Lin Bai ◽  
Ya Jun Lang

Ectoine had important physiological functions and superior potential applications, so the study of ectoine was extensively attented. This article was related to kinetic models of cell growth, product formation and substrate consumption, which was not only established according to the characteristics of ectoine batch fermentation by Halomonas salina DSM 5928 but also obtained the kinetic parameters by the nonlinear fitting method in the Microcal Origin software. Logistic, Luedeking-Piret and Luedeking-Piret-like equations was applied to analyze the cell growth, the ectoine formation and the substrate consumption by the kinetic model,respectively. The results between calculated values and experimental data were coincident. By fitting, correlation coefficients R2 were ≥ 0.989. The fermentation conditions of ectoine were analyzed according to the model. The results showed that ectoine productivity (0.28 g/L/h) was the highest when initial monosodium glutamate concentration (S0) was 60 g/L. However, when S0 was 80 g/L, the ectoine concentration was maximal, i.e., 7.59 g/L. The research suggested that ectoine formation belonged to the mixed kinetic mechanism of cell growth and biomass concentration, while the ectoine production mainly depended on instantaneous biomass concentration. The fermentation method for improving ectoine concentration was further proved. The established kinetic model will be of significant value to provide the optimal conditions of present process.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Maedeh Mohammadi ◽  
Abdul Rahman Mohamed ◽  
Ghasem D. Najafpour ◽  
Habibollah Younesi ◽  
Mohamad Hekarl Uzir

The intrinsic growth, substrate uptake, and product formation biokinetic parameters were obtained for the anaerobic bacterium,Clostridium ljungdahlii, grown on synthesis gas in various pressurized batch bioreactors. A dual-substrate growth kinetic model using Luong for CO and Monod for H2was used to describe the growth kinetics of the bacterium on these substrates. The maximum specific growth rate (μmax= 0.195 h−1) and Monod constants for CO (Ks,CO= 0.855 atm) and H2(Ks,H2= 0.412 atm) were obtained. This model also accommodated the CO inhibitory effects on cell growth at high CO partial pressures, where no growth was apparent at high dissolved CO tensions (PCO∗>0.743 atm). The Volterra model, Andrews, and modified Gompertz were, respectively, adopted to describe the cell growth, substrate uptake rate, and product formation. The maximum specific CO uptake rate (qmax= 34.364 mmol/gcell/h), CO inhibition constant (KI= 0.601 atm), and maximum rate of ethanol (Rmax= 0.172 mmol/L/h atPCO= 0.598 atm) and acetate (Rmax= 0.096 mmol/L/h atPCO= 0.539 atm) production were determined from the applied models.


1975 ◽  
Vol 14 (04) ◽  
pp. 330-338
Author(s):  
L. G. Colombetti ◽  
J. S. Arnold ◽  
W. E. Barnes

SummaryTc-99m pyridoxylidene glutamate has proven to be an excellent biliary scanning agent, far superior in many respect to the commonly used 1-131 rose bengal. The preparation of the compound as previously reported by Baker et al is too time consuming and requires the use of an autoclave which is not available in most nuclear medicine departments. In our facility, we have been preparing similar compounds using several aldehydes and monosodium glutamate to make labeled complexes having the same pharmacological characteristics. The mixture of monosodium glutamate, aldehyde, and Tc-99m pertechnetate is made slightly alkaline, purged with helium, and placed in a sealed vial. The vial, which is protected by a wire basket, is then heated in a laboratory oven at 130° C for a period of 15 to 20 minutes. During this time, the technetium is reduced to a lower valence state and bound to the complex formed. Chromatographic data show that these compounds are chemically similar to that previously reported. The compounds prepared concentrate in the gall bladder of the rabbit in less than 10 minutes. Kinetic studies have been performed on dogs with a scintillation camera and small digital computer to measure rates of blood clearance, liver and gall bladder uptake, and excretion into the intestine. The aldehyde — glutamate complex promises to be a useful scanning agent for the diagnosis of biliary and hepatocellular diseases.


2020 ◽  
Author(s):  
Arnaldo Silva Oliveira ◽  
Juan C. B. Neto ◽  
Igor J. B. Santos ◽  
Edson R. Nucci

Abstract The Z- and Laplace transforms are mathematical techniques applied to solve difference equations and differential equations, respectively. Mathematical models used to describe cell growth, substrate consumption and product formation in bioprocesses can be represented by these types of equations. Thus, in this work, the fermentation process of the yeast Saccharomyces cerevisiae was modeled using different models from the literature, and the Z- and Laplace transforms were applied to solve the equations. Once the equations were solved, the models were represented in state space and simulated in Octave® software. Finally, the models were compared to experimental data from previous studies and to each other. Verhulst was the model that best described the process, with an average error of 4.74% for cell growth and 13.9% for substrate consumption. This work is unprecedented since no works that use the Z transform and discrete models for the representation of fermentation of this yeast were found in the literature. Even more importantly, this work proved that discrete-time models can be applied to bioprocesses with the same precision as continuous-time models.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 59 ◽  
Author(s):  
Carolina Benevenuti ◽  
Alanna Botelho ◽  
Roberta Ribeiro ◽  
Marcelle Branco ◽  
Adejanildo Pereira ◽  
...  

Fermentation of gases from biomass gasification, named syngas, is an important alternative process to obtain biofuels. Sequential experimental designs were used to increase cell growth and ethanol production during syngas fermentation by Clostridium carboxidivorans. Based on ATCC (American Type Culture Collection) 2713 medium composition, it was possible to propose a best medium composition for cell growth, herein called TYA (Tryptone-Yeast extract-Arginine) medium and another one for ethanol production herein called TPYGarg (Tryptone-Peptone-Yeast extract-Glucose-Arginine) medium. In comparison to ATCC® 2713 medium, TYA increased cell growth by 77%, reducing 47% in cost and TPYGarg increased ethanol production more than four-times, and the cost was reduced by 31%. In 72 h of syngas fermentation in TPYGarg medium, 1.75-g/L of cells, 2.28 g/L of ethanol, and 0.74 g/L of butanol were achieved, increasing productivity for syngas fermentation.


2002 ◽  
Vol 12 (3) ◽  
pp. 181-192 ◽  
Author(s):  
M.Eugénia Esgalhado ◽  
Ana Teresa Caldeira ◽  
J.Carlos Roseiro ◽  
A.Nick Emery

2007 ◽  
Vol 189 (6) ◽  
pp. 2359-2368 ◽  
Author(s):  
Yusuke Terui ◽  
Kyohei Higashi ◽  
Shiho Taniguchi ◽  
Ai Shigemasa ◽  
Kazuhiro Nishimura ◽  
...  

ABSTRACT Proteins whose synthesis is enhanced by polyamines at the level of translation were identified in a polyamine-requiring mutant cultured in the presence of 0.1% glucose and 0.02% glutamate instead of 0.4% glucose as an energy source. Under these conditions, enhancement of cell growth by polyamines was almost the same as that in the presence of 0.4% glucose. It was found that synthesis of RpoN, Cra, and H-NS was enhanced by polyamines at the level of translation at the early logarithmic phase of growth (A 540 of 0.15). The effects of polyamines on synthesis of RpoN, H-NS, and Cra were due to the existence of unusual Shine-Dalgarno sequences (RpoN and H-NS) and an inefficient GUG initiation codon (Cra) in their mRNAs. Thus, rpoN, cra, and hns genes were identified as new members of the polyamine modulon. Because most of the polyamine modulon genes thus far identified encode transcription factors (RpoS [σ38], Cya, FecI [σ18], Fis, RpoN [σ54], Cra, and H-NS), DNA microarray analysis of mRNA expressed in cells was performed. At the early logarithmic phase of growth, a total of 97 species of mRNAs that were up-regulated by polyamines more than twofold were under the control of seven polyamine modulon genes mentioned above.


Sign in / Sign up

Export Citation Format

Share Document