scholarly journals Enhancement of the Synthesis of RpoN, Cra, and H-NS by Polyamines at the Level of Translation in Escherichia coli Cultured with Glucose and Glutamate

2007 ◽  
Vol 189 (6) ◽  
pp. 2359-2368 ◽  
Author(s):  
Yusuke Terui ◽  
Kyohei Higashi ◽  
Shiho Taniguchi ◽  
Ai Shigemasa ◽  
Kazuhiro Nishimura ◽  
...  

ABSTRACT Proteins whose synthesis is enhanced by polyamines at the level of translation were identified in a polyamine-requiring mutant cultured in the presence of 0.1% glucose and 0.02% glutamate instead of 0.4% glucose as an energy source. Under these conditions, enhancement of cell growth by polyamines was almost the same as that in the presence of 0.4% glucose. It was found that synthesis of RpoN, Cra, and H-NS was enhanced by polyamines at the level of translation at the early logarithmic phase of growth (A 540 of 0.15). The effects of polyamines on synthesis of RpoN, H-NS, and Cra were due to the existence of unusual Shine-Dalgarno sequences (RpoN and H-NS) and an inefficient GUG initiation codon (Cra) in their mRNAs. Thus, rpoN, cra, and hns genes were identified as new members of the polyamine modulon. Because most of the polyamine modulon genes thus far identified encode transcription factors (RpoS [σ38], Cya, FecI [σ18], Fis, RpoN [σ54], Cra, and H-NS), DNA microarray analysis of mRNA expressed in cells was performed. At the early logarithmic phase of growth, a total of 97 species of mRNAs that were up-regulated by polyamines more than twofold were under the control of seven polyamine modulon genes mentioned above.

2002 ◽  
Vol 267 (6) ◽  
pp. 721-729 ◽  
Author(s):  
M. Schembri ◽  
D. Ussery ◽  
C. Workman ◽  
H. Hasman ◽  
P. Klemm

2006 ◽  
Vol 72 (4) ◽  
pp. 2661-2671 ◽  
Author(s):  
Aaron S. Malone ◽  
Yoon-Kyung Chung ◽  
Ahmed E. Yousef

ABSTRACT Seventeen Escherichia coli O157:H7 strains were treated with ultrahigh pressure at 500 MPa and 23 ± 2°C for 1 min. This treatment inactivated 0.6 to 3.4 log CFU/ml, depending on the strain. The diversity of these strains was confirmed by pulsed-field gel electrophoresis (PFGE) analysis, and there was no apparent association between PFGE banding patterns and pressure resistance. The pressure-resistant strain E. coli O157:H7 EC-88 (0.6-log decrease) and the pressure-sensitive strain ATCC 35150 (3.4-log decrease) were treated with a sublethal pressure (100 MPa for 15 min at 23 ± 2°C) and subjected to DNA microarray analysis using an E. coli K-12 antisense gene chip. High pressure affected the transcription of many genes involved in a variety of intracellular mechanisms of EC-88, including the stress response, the thiol-disulfide redox system, Fe-S cluster assembly, and spontaneous mutation. Twenty-four E. coli isogenic pairs with mutations in the genes regulated by the pressure treatment were treated with lethal pressures at 400 MPa and 23 ± 2°C for 5 min. The barotolerance of the mutants relative to that of the wild-type strains helped to explain the results obtained by DNA microarray analysis. This study is the first report to demonstrate that the expression of Fe-S cluster assembly proteins and the fumarate nitrate reductase regulator decreases the resistance to pressure, while sigma factor (RpoE), lipoprotein (NlpI), thioredoxin (TrxA), thioredoxin reductase (TrxB), a trehalose synthesis protein (OtsA), and a DNA-binding protein (Dps) promote barotolerance.


Cosmetics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 60
Author(s):  
Hisae Aoshima ◽  
Masayuki Ito ◽  
Rinta Ibuki ◽  
Hirokazu Kawagishi

In this study, we verified the effects of 2-aza-8-oxohypoxanthine (AOH) on human epidermal cell proliferation by performing DNA microarray analysis. Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, which measures mitochondrial respiration in normal human epidermal keratinocyte (NHEK) cells. Gene expression levels were determined by DNA microarray analysis of 177 genes involved in skin aging and disease. AOH showed a significant increase in cell viability at concentrations between 7.8 and 31.3 μg/mL and a significant decrease at concentrations above 250 μg/mL. DNA microarray analysis showed that AOH significantly increased the gene expression of CLDN1, DSC1, DSG1, and CDH1 (E-cadherin), which are involved in intercellular adhesion and skin barrier functioning. AOH also up-regulated the expression of KLK5, KLK7, and SPIMK5, which are proteases involved in stratum corneum detachment. Furthermore, AOH significantly stimulated the expression of KRT1, KRT10, TGM1, and IVL, which are considered general differentiation indicators, and that of SPRR1B, a cornified envelope component protein. AOH exerted a cell activation effect on human epidermal cells. Since AOH did not cause cytotoxicity, it was considered that the compound had no adverse effects on the skin. In addition, it was found that AOH stimulated the expression levels of genes involved in skin barrier functioning by DNA microarray analysis. Therefore, AOH has the potential for practical use as a cosmetic ingredient. This is the first report of efficacy evaluation tests performed for AOH.


2011 ◽  
Vol 16 (10) ◽  
pp. 1440-1450 ◽  
Author(s):  
Francesca Menghi ◽  
Francesca N. Orzan ◽  
Marica Eoli ◽  
Mariangela Farinotti ◽  
Emanuela Maderna ◽  
...  

Microbiology ◽  
2009 ◽  
Vol 155 (7) ◽  
pp. 2197-2210 ◽  
Author(s):  
Hirofumi Hara ◽  
Yasuo Ohnishi ◽  
Sueharu Horinouchi

A-factor (2-isocapryloyl-3R-hydroxymethyl-γ-butyrolactone) is a microbial hormone that triggers morphological differentiation and secondary metabolism in Streptomyces griseus. The effects of A-factor on global gene expression were determined by DNA microarray analysis of transcriptomes obtained with the A-factor-deficient mutant ΔafsA. A-factor was added at a concentration of 25 ng ml−1 to mutant ΔafsA at the middle of the exponential growth phase, and RNA samples were prepared from the cells grown after A-factor addition for a further 5, 15 and 30 min, and 1, 2, 4, 8 and 12 h. The effects of A-factor on transcription of all protein-coding genes of S. griseus were evaluated by comparison of the transcriptomes with those obtained from cells grown in the absence of A-factor. Analysis of variance among the transcriptomes revealed that 477 genes, which were dispersed throughout the chromosome, were differentially expressed during the 12 h after addition of A-factor, when evaluated by specific criteria. Quality threshold clustering analysis with regard to putative polycistronic transcriptional units and levels of upregulation predicted that 152 genes belonging to 74 transcriptional units were probable A-factor-inducible genes. Competitive electrophoretic mobility shift assays using DNA fragments including putative promoter regions of these 74 transcriptional units suggested that AdpA bound 37 regions to activate 72 genes in total. Many of these A-factor-inducible genes encoded proteins of unknown function, suggesting that the A-factor regulatory cascade of S. griseus affects gene expression at a specific time point more profoundly than expected.


2011 ◽  
Vol 36 (1) ◽  
pp. 127-129 ◽  
Author(s):  
Maki Tokumoto ◽  
Tomoaki Ohtsu ◽  
Akiko Honda ◽  
Yasuyuki Fujiwara ◽  
Hisamitsu Nagase ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document