Growth dynamics of lactic acid bacteria and dairy microscopic fungus Geotrichum candidum during their co-cultivation in milk

2020 ◽  
pp. 108201322097648
Author(s):  
Petra Šipošová ◽  
Martina Koňuchová ◽  
Ľubomír Valík ◽  
Alžbeta Medveďová

Production of high-quality and microbiologically safe fermented dairy products requires controlled growth and microbial interactions between lactic acid bacteria and microscopic fungi. For this purpose, detailed knowledge of their growth characteristics is needed. Therefore, the objective of this study was to analyse the growth dynamics of lactic acid bacteria of commercial DVS® FRESCO® 1000NG culture and dairy isolate of microscopic fungus Geotrichum candidum during their co-cultivation in milk. The growth dynamics of microorganisms was studied in dependence on their initial counts at 12, 15, 18, 21 and 30 °C. Growth parameters were calculated by two primary predictive models, model of Baranyi and Roberts and Huang’s model. Both models showed good ability to describe the growth dynamics of studied microorganisms, as it was confirmed by low values of RMSE index. Both microbial cultures, Fresco culture and Geotrichum candidum, showed good growth ability in milk since they reached the average maximum density of 9.50 ± 0.13 log CFU/mL and 5.85 ± 0.69 log CFU/mL ( n = 45), in order. Maximum density of studied microorganisms was not affected by their initial counts or incubation temperature. On the other hand, effect of mutual ratio of microbial initial counts and increasing temperature had a significant impact on growth dynamics.

2010 ◽  
Vol 27 (Special Issue 2) ◽  
pp. 18-27 ◽  
Author(s):  
A. Hudecová ◽  
Ľ. Valík ◽  
D. Liptáková

The growth dynamics of filamentous fungus G. candidum was studied during the co-cultivation with the commercial lactic acid bacteria (LAB) culture Fresco. The experiments were carried out in milk and on the surface of a milk agar at the temperature ranging from 5 to 37°C. Ratkowsky model was used to describe the relationships of the fungal growth rate to the temperature during both, single and co-cultivation with LAB in milk. Simultaneous growth of LAB affected significantly the growth rate of the filamentous fungus. The growth of G. candidum was in average 39% slower in the co-culture than in the single cultivation. LAB pre-inoculated and growing in the solid medium did not show any significant inhibitory effect on the surface growth of G. candidum at all tested temperature. The precise data describing the growth of this cheese yeast-like fungus, G. candidum, may fill a gap in the field of quantitative food mycology and may be used for predicting its behavior in real conditions.


2021 ◽  
Author(s):  
Luciano Lopes Queiroz ◽  
Christian Hoffmann ◽  
Gustavo Augusto Lacorte ◽  
Bernadette Dora Gombossy de Melo Franco ◽  
Svetoslav Dimitrov Todorov

Boza is a traditional low-alcohol fermented beverage from the Balkan Peninsula, frequently explored as a functional food product. The product is rich in Lactic Acid Bacteria (LAB) and some of them can produce bacteriocins. In this study, a sample of Boza from Belogratchik, Bulgaria, was analyzed for the presence of bacteriocinogenic LAB, and after analyses by RAPD-PCR, three representative isolates were characterized by genomic analyses, using whole genome sequencing. Isolates identified as Pediococcus pentosaceus ST75BZ and Pediococcus pentosaceus ST87BZ contained operons encoding for bacteriocins pediocin PA-1 and penocin A, while isolate identified as P. acidilactici ST31BZ contained only the operon for pediocin PA-1 and a CRISPR/Cas system for protection against bacteriophage infection. The antimicrobial activity of bacteriocins produced by the three isolates was inhibited by treatment of the cell-free supernatants with proteolytic enzymes. The produced bacteriocins inhibited the growth of Listeria monocytogenes, Enterococcus spp. and some Lactobacillus spp., among other tested species. The levels of bacteriocin production varied from 3200 AU/ml to 12800 AU/ml recorded against L. monocytogenes 104, 637 and 711, measured at 24 h of incubation at 37oC. All bacteriocins remained active after incubation at pH 2.0 to 10.0. The activity mode of the studied bacteriocins was bactericidal, as determined against L. monocytogenes 104, 637 and 711. In addition, bactericidal activity was demonstrated using a cell leakage β-galactosidase assay, indicating a pore formation mechanism as a mode of action. The present study highlights the importance of combining metagenomic analyses and traditional microbiological approaches as way of characterizing microbial interactions in fermented foods.


2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Louise Bartle ◽  
Krista Sumby ◽  
Joanna Sundstrom ◽  
Vladimir Jiranek

ABSTRACTThe diversity and complexity of wine environments present challenges for predicting success of fermentation. In particular, compatibility between yeast and lactic acid bacteria is affected by chemical and physical parameters that are strain and cultivar specific. This review focuses on the impact of compound production by microbes and physical interactions between microbes that ultimately influence how yeast and bacteria may work together during fermentation. This review also highlights the importance of understanding microbial interactions for yeast-bacteria compatibility in the wine context.


2020 ◽  
Vol 8 (9) ◽  
pp. 1266 ◽  
Author(s):  
Łukasz Łopusiewicz ◽  
Emilia Drozłowska ◽  
Alicja Tarnowiecka-Kuca ◽  
Artur Bartkowiak ◽  
Kinga Mazurkiewicz-Zapałowicz ◽  
...  

This study aimed at investigating the antioxidant activity, oxidative stability, physicochemical and microbial changes of innovative vegan Camembert-analogue based on flaxseed oil cake (FOC) which was produced using lactic acid bacteria (LAB), mold Penicillium camemberti (PC) and yeast Geotrichum candidum (GC). Two variants were prepared, namely with LAB + PC and LAB + PC + GC. After fermentation for 24 h at room temperature, the samples were stored for 14 days at 12 °C and maturated for 14 days at 6 °C. Changes in microbial population, polyphenolics, flavonoids, radical scavenging capacity were evaluated. Additionally, textural changes, pH, acidity, levels of proteins, free amino acids, reducing sugars, oil content and its oxidative stability were determined. Results showed that LAB as well as fungi were capable of growing well in the FOC without any supplementation and the products were characterized by a high antioxidant potential (high polyphenolics and flavonoids contents as well as 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), superoxide (O2−) and hydroxyl (·OH) radicals scavenging activity). This study has demonstrated that bioactivity as well as the physicochemical properties depend on the starter culture used. Due to functional and biochemical characteristics conferred to the obtained Camembert-analogues, the use of P. camemberti and G. candidum showed a potential for industrial application. There is a potential for these products to be used where non-dairy alternatives are desired.


2020 ◽  
Vol 11 ◽  
Author(s):  
Fanny Canon ◽  
Thibault Nidelet ◽  
Eric Guédon ◽  
Anne Thierry ◽  
Valérie Gagnaire

2022 ◽  
Author(s):  
Nikiforova AP ◽  
Khazagaeva SN ◽  
Khamagaeva IS

Two strains of lactic acid bacteria were selected for the study (Lactobacillus sakei Lsk-45andLactobacillus sakeiDSM 20017). Bacterial media, based on rice and rice flour, were tested as an alternative to media based on whey. A comparison of the different types of media showed that there was better growth of the selected strains on themedium based on rice flour.Statistical analyses, including factorial experiments and response surface analyses, were used to optimizethe composition of the bacterial medium for Lactobacillus sakei propagation. Bacteriological peptone and rice flour were found to be good growth factors for Lactobacillus sakei.For Lactobacillus sakei Lsk-45,better growth was obtained with the use of 7.75-10 g/L of peptone and 57.5-75 g/L of rice flour. For Lactobacillus sakei DSM 20017, better growth was obtained with the use of 7-10 g/L of peptone and 40-75 g/L of rice flour. Keywords: starters, media, Lactobacillus sakei, fermentation,fish products, bacterial strains, lactic acid bacteria


2021 ◽  
Vol 9 (6) ◽  
pp. 1208
Author(s):  
Kyohei Horio ◽  
Hirokazu Takahashi ◽  
Toshiro Kobori ◽  
Kenshi Watanabe ◽  
Tsunehiro Aki ◽  
...  

Recently, we developed an in situ mRNA detection method termed RNase H-assisted rolling circle amplification-fluorescence in situ hybridization (RHa-RCA-FISH), which can detect even short mRNA in a bacterial cell. However, because this FISH method is sensitive to the sample condition, it is necessary to find a suitable cell permeabilization and collection protocol. Here, we demonstrate its further applicability for detecting intrinsic mRNA expression using lactic acid bacteria (LAB) as a model consortium. Our results show that this method can visualize functional gene expression in LAB cells and can be used for monitoring the temporal transition of gene expression. In addition, we also confirmed that data obtained from bulk analyses such as RNA-seq or microarray do not always correspond to gene expression in individual cells. RHa-RCA-FISH will be a powerful tool to compensate for insufficient data from metatranscriptome analyses while clarifying the carriers of function in microbial consortia. By extending this technique to capture spatiotemporal microbial gene expression at the single-cell level, it will be able to characterize microbial interactions in phytoplankton–bacteria interactions.


2018 ◽  
Vol 25 (2) ◽  
pp. 141-149 ◽  
Author(s):  
Zuzana Matejčeková ◽  
Elena Dujmić ◽  
Denisa Liptáková ◽  
Ľubomír Valík

Lactic acid bacteria alone or with special adjunct probiotic strains are inevitable for the preparation of various specific functional foods. Moreover, because of their growth and metabolism, the final products are preserved for a certain time. Thus, growth dynamics of the lactic acid bacteria of the Fresco DVS 1010 culture ( Lactococcus lactis spp. lactis, Lactococcus lactis spp. cremoris, Streptococcus salivarius spp. thermophilus) during liquid-state fermentation of soya mashes and pH values within the process were analyzed in this study. Although milk is the most typical growth medium for the lactic acid bacteria, presumable viable counts of Fresco culture reached levels 109 CFU ml−1 after 8 h, representing 2–3 log increase in comparison to initial state (specific growth rates ranged from 1.06 to 1.64 h−1). After 21 days of storage period, the pH levels in the products were reduced to 4.50–4.70, representing a decrease of about 1.5–1.7 units. All prepared soybean products contained detectable amounts of raffinose-series oligosaccharides (0.25–0.68 g per 100 g) that were reduced in average by about 30.5% during period of 21 days.


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 500-504 ◽  
Author(s):  
Akihito Endo ◽  
Tomohiro Irisawa ◽  
Yuka Futagawa-Endo ◽  
Katsumi Takano ◽  
Maret du Toit ◽  
...  

Lactobacillus kunkeei is an inhabitant of fructose-rich niches and is a potential member of the fructophilic lactic acid bacteria. In the present study, the phylogenetic and biochemical characteristics of the type strain and eight isolates of L. kunkeei, originating from wine, flowers and honey, were studied. The nine isolates, including the type strain, formed a well-defined phylogenetic subcluster based on the analysis of 16S rRNA gene sequences. The subcluster was not closely related to other subclusters in the Lactobacillus phylogenetic group. Biochemically, the eight new isolates showed typical fructophilic characteristics. The eight isolates grew poorly on glucose, but grew well on fructose. Good growth on glucose was only recorded in the presence of electron acceptors. The type strain of L. kunkeei differed from the other isolates only on the basis of poor growth on fructose. Although they belong to a group of obligately heterofermentative lactic acid bacteria, all nine isolates, including the type strain, produced almost equimolar amounts of lactic acid and acetic acid and very little ethanol from glucose. Eight of the isolates can thus be regarded as typical ‘obligately’ fructophilic lactic acid bacteria. Although the type strain of L. kunkeei was phenotypically slightly different from the other isolates, it possessed several important fructophilic characteristics. On the basis of the evidence gathered in this study, the type strain of L. kunkeei is recognized as a member of the ‘obligately’ fructophilic lactic acid bacteria.


Sign in / Sign up

Export Citation Format

Share Document