Assessing the influence of psyllium as a fat substitute in wheat and gluten-free cookies

2020 ◽  
pp. 108201322098133
Author(s):  
Mayara Belorio ◽  
Cecilia Moralejo ◽  
Manuel Gómez

Psyllium is a natural fibre with high water absorption capacity and proved nutritional advantages. The aim of this study was to evaluate the potential of psyllium as a fat replacer in sugar-snap cookies. Elaborations were made with wheat flour or maize flour by maintaining the original recipe or replacing the fat by a paste made with different proportion of psyllium and water. Cookies dough rheology and final cookies properties were evaluated. An acceptability test was also carried out. The replacement of fat decreased the values of G′, G″ and G*, but increased tg delta to a greater extent in cookies with gluten. Cookies diameter and spread factor decreased and increased both cookies hardness and moisture content. Fat replacement increase L* value of cookies. Variation of the water content did not influence in the rheology of the dough and in the characteristics of gluten-free cookies, but wheat cookies had smaller spread ratio and decreasing hardness for increasing amount of water. Final cookies had low acceptability and this result was more evident in gluten-free cookies. Considering this result, it is difficult to use psyllium as a total fat substitute in this type of product.

Author(s):  
Simona Maria Man ◽  
Adriana Paucean ◽  
Sevastita Muste

The aglutenics biscuits are intended to those persons who are suffering due to gluten intolerance, also named celiac disease. The fabrication technologies of the aglutenics products can be developed in on two ways: by separating the gluten from the grain or by replacing the grain flour with other types of gluten less flour, in case of bakery and pastry products. In this experiment, the gluten-free biscuits were obtained from the following flours mixture: maize flour (MF), rice flour (RF) and soybeans flour (SF). Other raw materials were used, such as: palmtree oil, honey, maize starch, eggs, sugar powdered, vanilla essence and sodium bicarbonate. Four experimental variants (gluten-free biscuits) were obtained by varying the proportion of flours ; these variants were coded as follows T1, T2 T3 and T4. The optimization of the aglutenics biscuits manufacture recipe was realized through sensory analyze, using the hedonic test (9 point scale). Samples of biscuits was subjected to the following physico-chemical analysis: moisture content, alkalinity, total carbohydrate content, total fat and protein content. Also the physical properties (length, width, thickness, weight and spread ratio) were determined in order to asses the blending influence on the biscuits quality. The blend with flour levels 30:30:40 (MF:RF:SF) led to the highest acceptability.


2020 ◽  
pp. 74-83
Author(s):  
Ju. V. Ushakova ◽  
E. M. Paskova ◽  
G. E. Rysmukhambetova ◽  
T. B. Kulevatova

The article presents experimental data on the assessment of the rheological properties of dough from new types of flour, formed on the basis of cumulative curves using the Mixolab device. The data of mixolabograms and radial diagrams (Mixolab profiler) made it possible to reveal the existing differences in the parameters of the rheological profile and Mixolab indices. The object of the study is composite mixtures of gluten-free flours: No. 1 is 50% of pumpkin and 50% of corn flour, No. 2 is 50% of linseed and 50% of corn flour, No. 3 – 50% of rice and 50% of corn flour, No. 4 – 75% of linseed and 25% of corn flour, No. 5 is 30% of linseed and 70% of rice flour. The use of composite mixtures is promising due to high oven rise and low starch thickening because of its high water absorption capacity (WAC). In addition, there is certain economic efficiency, since it is possible to produce more dough at a lower cost.


Foods ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 83 ◽  
Author(s):  
Mayara Belorio ◽  
Marta Sahagún ◽  
Manuel Gómez

The objective of the present study was to analyse the influence of particle size distribution of maize flour in the formulation of gluten-free cookies. Different cookie formulations were made with three distinct maize flour fractions obtained by sieving (less than 80 µm; between 80 and 180 µm; greater than 180 µm). Cookies dimension, texture and colour were evaluated. Flour hydration properties and cookie dough rheology were also measured. Overall, an increase in maize flour particle size decreases the values of water holding capacity (WHC), swelling volume and G’ (elastic modulus) for the doughs. An increase in average particle size also increases diameter and spread factor of the cookies but decreases their hardness. A higher percentage of thick particles is more effective to reduce cookie hardness, but a certain percentage of thinner particles is necessary to give cohesion to the dough and to allow formation of the cookies without breaking. Cookies with a larger diameter also presented a darker colour after baking.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 911
Author(s):  
Marta Torra ◽  
Mayara Belorio ◽  
Manuel Ayuso ◽  
Marcio Carocho ◽  
Isabel C. F. R. Ferreira ◽  
...  

This study proposes the use of a mix composed of chickpea flour and chestnut flour in cookies, aiming to improve their acceptability. Cookie properties and nutritional value were also analysed. The gluten-free cookies were made by using different mixes of chickpea and chestnut flours (0:100, 25:75, 50:50, 75:25, 100:0). Dough rheology and cookie dimensions, texture, external colour and acceptability were evaluated. The presence of the chestnut flour increased the values of G’ and G”, but reduced the loss factor (tan δ) when compared with the doughs made with chickpea flour. Chestnut flour also decreased the diameter and the spread ratio of the cookies, while increasing the hardness and darkening of the cookies. Furthermore, adding chestnut to the flour mixture increased the nutritional quality of the cookies by adding unsaturated fatty acids and fibre. The use of reduced percentages of chestnut flour (25%) resulted in masking the off-flavour of the chickpea flour, which improved the cookie’s acceptability without significantly changing the dough rheology, cookie dimensions, hardness, or lightness.


2021 ◽  
Vol 6 (6) ◽  
pp. 82
Author(s):  
Cinthia Maia Pederneiras ◽  
Rosário Veiga ◽  
Jorge de Brito

One of the main functions of renders, together with the overall aesthetic appearance of the building, is the protection of the walls against external aggressive actions, such as water, salts solutions, erosion, and mechanical impacts. However, some anomalies of renders may drastically hinder their protection ability. In fact, cracking, high water permeability, and loss of adherence to the substrate of renders limit their barrier effect and favour the exposure of the substrate to external actions. The incorporation of fibres in mortars is commonly pointed out to reduce their cracking susceptibility, due to the probable enhancement in tensile strength and ductility of the composite. The use of lime in substitution of the part of the cement binder is seen as a method to reduce the modulus of elasticity and therefore enhance the resistance to cracking due to drying shrinkage. Therefore, this study investigates the wall protection-related properties of natural fibre-reinforced renders with cement-lime as a binary binder at 1:1:6 volumetric ratio. With this purpose, wool, coir, and flax fibres are used at 20% by total mortar volume and the water behaviour, cracking susceptibility, and adherence to the substrate of the mortars are assessed. Specifically, the water absorption by capillarity, drying rates, permeability to water under pressure, adherence strength, and shrinkage are evaluated. In order to evaluate the renders’ durability and therefore the durability of the protection to the walls, an artificial accelerated ageing test is performed based on heating-freezing and humidification-freezing cycles. The results indicate that the fibres’ addition reduced the shrinkage and modulus of elasticity of the mortars, which suggests lower susceptibility to cracking. The addition of fibres in mortars seemed to slightly affect their water performance and only at early ages. From the results, it was concluded that the adherence strength is not affected by the fibres’ incorporation. The fibres seem also to reduce the impacts of the ageing cycles on the mortar and the improvements provided by the fibres’ addition to the mortars’ performance remained after ageing when compared to the mortars without fibres, thus being a potential alternative to increase their durability. These aspects are particularly important for buildings, since they can extend their service life and promote their sustainability.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4442
Author(s):  
Michela Costantini ◽  
Carmine Summo ◽  
Michele Faccia ◽  
Francesco Caponio ◽  
Antonella Pasqualone

Gluten-free (GF) products, including pasta, are often characterised by nutritional deficiencies, such as scarce dietary fibre and excess of calories. Chickpea flour is increasingly being used by the food industries. Hulls, rich in dietary fibre and bioactive compounds, are discarded after milling. The aim of this work was to evaluate the quality features of short-cut GF fresh pasta added of hull (8% w/w) derived from kabuli (KH) or Apulian black (ABH) chickpeas, in comparison with control GF pasta prepared without hull. The enriched pasta, which could be labelled as “high fibre”, was characterised by a higher level of bioactive compounds and antioxidant activity than the control. ABH-enriched pasta showed the highest anthocyanins (33.37 ± 1.20 and 20.59 ± 0.11 mg/kg of cyanidin-3-O-glucoside on dry matter in raw and cooked pasta, respectively). Hull addition increased colour intensity and structural quality of GF pasta: ABH-enriched pasta had the lowest cooking loss and the highest water absorption capacity; KH-enriched pasta showed the highest firmness. No significant differences in sensory liking were found among the samples, except for “aftertaste”. Chickpea hull can be used as an innovative ingredient to produce potentially functional GF pasta, meeting the dietary needs of consumers without affecting quality.


Gels ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Samuel Mandin ◽  
Samuel Moreau ◽  
Malika Talantikite ◽  
Bruno Novalès ◽  
Jean-Eudes Maigret ◽  
...  

Bio-based aerogels containing cellulose nanofibrils (CNFs) are promising materials due to the inherent physical properties of CNF. The high affinity of cellulose to plant hemicelluloses (xyloglucan, xylan, pectin) is also an opportunity to develop biomaterials with new properties. Here, we prepared aerogels from gelled dispersions of CNFs and xyloglucan (XG) at different ratios by using a freeze-casting procedure in unidirectional (UD) and non-directional (ND) manners. As showed by rheology analysis, CNF and CNF/XG dispersions behave as true gels. We investigated the impact of the freezing procedure and the gel’s composition on the microstructure and the water absorption properties. The introduction of XG greatly affects the microstructure of the aerogel from lamellar to cellular morphology. Bio-based aerogels showed high water absorption capacity with shape recovery after compression. The relation between morphology and aerogel compositions is discussed.


2007 ◽  
Vol 79 (3) ◽  
pp. 1033-1047 ◽  
Author(s):  
A. Lazaridou ◽  
D. Duta ◽  
M. Papageorgiou ◽  
N. Belc ◽  
C.G. Biliaderis

2014 ◽  
Vol 9 (4) ◽  
pp. 155892501400900 ◽  
Author(s):  
Sabela Camano ◽  
Nemeshwaree Behary ◽  
Philippe Vroman ◽  
Christine Campagne

Flax fibers, available as fiber bundles, are commonly used as fiber reinforcement in composite materials as a substitute for glass fibers. Pre-treatments are often necessary for improving fiber-resin adhesion, and also to facilitate fiber elementarization, and to improve fiber ability to be implemented in mechanical processes limiting fiber damages. This paper focuses on the impact of biotechnologies (effect of 2 different enzymes: a pectate lyase and a laccase) and of an ecotechnology (ultrasound with ethanol), compared to classical chemical pre-treatments (using aqueous NaOH and ammonia) on the final flax fiber bundle properties, before and after a carding process. Fiber surface properties (wettability and/or zeta potential values), fiber elementarization and mechanical properties vary with the type of treatment (chemical nature of product and conditions used). Fibers elementarised using pectate lyase and ultrasound/ethanol have a hydrophilic surface and a high water absorption capacity, and are also of highest quality in terms of increased fineness. Treatment with NaOH yields the poorest fiber bundle tenacity. Laccase enzyme yields long thick hydrophobic fibers having very low water absorption capacity, and the most neutral surface charge. Properties of flax fibers can be easily monitored using different pre-treatments resulting in fibers which would be suited for various final applications.


2011 ◽  
Vol 17 (4) ◽  
pp. 279-291 ◽  
Author(s):  
D. Sabanis ◽  
C. Tzia

Addition of hydrocolloids (H/C) in gluten-free (GF) bread formulation is necessary in order to act as polymeric substances that should mimic the viscoelastic properties of gluten and increase the dough’s gas-retaining ability. The properties of H/C vary depending on their origin and chemical structure. Addition of H/C (hydroxypropylmethylcellulose (HPMC), xanthan, κ-carrageenan and guar gum) of different origins at 1%, 1.5% and 2% (w/w) in GF formulations based on corn starch and rice flour was carried out to investigate the effects on dough rheology and bread quality. The consistency, viscosity and thermal properties of doughs were evaluated. According to results, 1% and 1.5% addition of H/C (except from xanthan) contributed to bread with higher loaf volume and better color compared to control GF bread as well as to increased shelf life due to its moisture-absorption ability. Sensory evaluation by a trained panel revealed a preference for bread containing 1.5% HPMC because of its loaf volume, appearance and firmness characteristics. The micrographs of the dough showed a continuous matrix between starch and HPMC obtaining a more aerated structure.


Sign in / Sign up

Export Citation Format

Share Document