scholarly journals High-Throughput Screen for Inhibitors of 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase by Surrogate Ligand Competition

2003 ◽  
Vol 8 (3) ◽  
pp. 332-339 ◽  
Author(s):  
Elizabeth B. Gottlin ◽  
R. Edward Benson ◽  
Scott Conary ◽  
Brett Antonio ◽  
Kellie Duke ◽  
...  

1-Deoxy-D-xylulose 5-phosphate reductoisomerase (Dxr) is a key enzyme in a biosynthetic pathway for isoprenoids that is unique to eubacteria and plants. Dxr catalyzes the rearrangement and NADPH-dependent reduction of 1-deoxy-D-xylulose 5-phosphate to 2-C-methyl-D-erythritol 4-phosphate. The authors have purified Escherichia coli Dxr and devised a high-throughput screen (HTS) for compounds that bind to this enzyme at a functional site. Evidence is presented that the surrogate ligand directly binds or allosterically affects both the D-1-deoxyxylulose 5-phosphate (DXP) and NADPH binding sites. Compounds that bind at either or both sites that compete for binding with the surrogate ligand register as hits. The time-resolved fluorescence-based assay represents an improvement over the Dxr enzyme assay that relies on relatively insensitive measurements of NADPH oxidation. Screening 32,000 compounds from a diverse historical library, the authors obtained 89 potent inhibitors in the surrogate ligand competition assay. The results presented here suggest that peptide surrogate ligands may be useful in formatting HTS for proteins with difficult biochemical assays or targets of unknown function. ( Journal of Biomolecular Screening 2003:332-339)

2012 ◽  
Vol 184 (1-2) ◽  
pp. 34-40 ◽  
Author(s):  
Ying-Shan Han ◽  
Peter Quashie ◽  
Thibault Mesplede ◽  
Hongtao Xu ◽  
Kevork Mekhssian ◽  
...  

2020 ◽  
Vol 295 (41) ◽  
pp. 14100-14110 ◽  
Author(s):  
Piyali Guhathakurta ◽  
Lien A. Phung ◽  
Ewa Prochniewicz ◽  
Sarah Lichtenberger ◽  
Anna Wilson ◽  
...  

Actin's interactions with myosin and other actin-binding proteins are essential for cellular viability in numerous cell types, including muscle. In a previous high-throughput time-resolved FRET (TR-FRET) screen, we identified a class of compounds that bind to actin and affect actomyosin structure and function. For clinical utility, it is highly desirable to identify compounds that affect skeletal and cardiac muscle differently. Because actin is more highly conserved than myosin and most other muscle proteins, most such efforts have not targeted actin. Nevertheless, in the current study, we tested the specificity of the previously discovered actin-binding compounds for effects on skeletal and cardiac α-actins as well as on skeletal and cardiac myofibrils. We found that a majority of these compounds affected the transition of monomeric G-actin to filamentous F-actin, and that several of these effects were different for skeletal and cardiac actin isoforms. We also found that several of these compounds affected ATPase activity differently in skeletal and cardiac myofibrils. We conclude that these structural and biochemical assays can be used to identify actin-binding compounds that differentially affect skeletal and cardiac muscles. The results of this study set the stage for screening of large chemical libraries for discovery of novel compounds that act therapeutically and specifically on cardiac or skeletal muscle.


2018 ◽  
Vol 23 (10) ◽  
pp. 1018-1029 ◽  
Author(s):  
Ken Katsuya ◽  
Yuji Hori ◽  
Daisuke Oikawa ◽  
Tomohisa Yamamoto ◽  
Kayo Umetani ◽  
...  

The nuclear factor κB (NF-κB) pathway is critical for regulating immune and inflammatory responses, and uncontrolled NF-κB activation is closely associated with various inflammatory diseases and malignant tumors. The Met1-linked linear ubiquitin chain, which is generated by linear ubiquitin chain assembly complex (LUBAC), is important for regulating NF-κB activation. This process occurs through the linear ubiquitination of NF-κB essential modulator, a regulatory subunit of the canonical inhibitor of the NF-κB kinase complex. In this study, we have established a robust and efficient high-throughput screening (HTS) platform to explore LUBAC inhibitors, which may be used as tool compounds to elucidate the pathophysiological role of LUBAC. The HTS platform consisted of both cell-free and cell-based assays: (1) cell-free LUBAC-mediated linear ubiquitination assay using homogenous time-resolved fluorescence technology and (2) cell-based LUBAC assay using the NF-κB luciferase reporter gene assay. By using the HTS platform, we performed a high-throughput chemical library screen and identified several hit compounds with selectivity against a counterassay. Liquid chromatography–mass spectrometry analysis revealed that these compounds contain a chemically reactive lactone structure, which is transformed to give reactive α,β-unsaturated carbonyl compounds. Further investigation revealed that the reactive group of these compounds is essential for the inhibition of LUBAC activity.


2004 ◽  
Vol 25 ◽  
pp. S572
Author(s):  
Bruno P. Imbimbo ◽  
Hugo Albrecht ◽  
Peter Zbinden ◽  
Andrea Rizzi ◽  
Ginno Villetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document