scholarly journals Buckling of laminated glass plates using the effective thickness concept

2020 ◽  
pp. 109963622092700 ◽  
Author(s):  
Manuel Aenlle-López ◽  
Fernandez Pelayo ◽  
Miguel M Calvente ◽  
Maria J Lamela-Rey

The critical buckling loads of laminated glass panels are time and temperature dependent because the mechanical behavior of these elements is governed by the material properties of the interlayers, which exhibit a viscoelastic behavior. Although structural stability is one of the design requirements in laminated glass panels, the literature about buckling of these elements is sparse. The finite element method can be used to calculate the response of laminated glass plates, but the classical eigenvalue buckling analysis implemented in these programs does not consider the time and temperature dependency of the interlayers. In this paper, a simplified analytical method to calculate the buckling critical load of rectangular laminated glass plates is presented, where the equations corresponding to linear-elastic monolithic thin plates are modified with an effective stiffness [Formula: see text] dependent on the geometry, material properties, and boundary conditions of the plate. The analytical equations are validated by numerical simulations on simply-supported laminated glass plates subject to uniaxial, biaxial, and in-plane shear, the maximum discrepancies being less than 10% for all the cases studied in the paper.

2015 ◽  
Vol 665 ◽  
pp. 97-100 ◽  
Author(s):  
Marko Katinic ◽  
Drazan Kozak ◽  
Ivan Samardzic ◽  
Antun Stoic ◽  
Zeljko Ivandic ◽  
...  

The interaction behavior of twin collinear through-wall cracks in tension loaded plate under elastic-plastic condition is investigated by the finite element method (FEM). The fracture parameter J integral for interacting cracks is calculated and compared to the J integral for a single crack the same size. In this way, the interaction factor of cracks under elastic-plastic condition is defined. This interaction factor is compared to the results of analytical solution of the interaction factor under linear elastic condition. The results show that interaction factor of cracks under elastic-plastic condition is higher than interaction factor of same cracks under linear elastic condition. Also the interaction effect of cracks under elastic-plastic condition is influenced not only by the crack configurations but also by the material properties, especially the strain hardening exponent n.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 830
Author(s):  
Sina Rößler ◽  
Andreas Brückner ◽  
Iris Kruppke ◽  
Hans-Peter Wiesmann ◽  
Thomas Hanke ◽  
...  

Today, materials designed for bone regeneration are requested to be degradable and resorbable, bioactive, porous, and osteoconductive, as well as to be an active player in the bone-remodeling process. Multiphasic silica/collagen Xerogels were shown, earlier, to meet these requirements. The aim of the present study was to use these excellent material properties of silica/collagen Xerogels and to process them by additive manufacturing, in this case 3D plotting, to generate implants matching patient specific shapes of fractures or lesions. The concept is to have Xerogel granules as active major components embedded, to a large proportion, in a matrix that binds the granules in the scaffold. By using viscoelastic alginate as matrix, pastes of Xerogel granules were processed via 3D plotting. Moreover, alginate concentration was shown to be the key to a high content of irregularly shaped Xerogel granules embedded in a minimum of matrix phase. Both the alginate matrix and Xerogel granules were also shown to influence viscoelastic behavior of the paste, as well as the dimensionally stability of the scaffolds. In conclusion, 3D plotting of Xerogel granules was successfully established by using viscoelastic properties of alginate as matrix phase.


2005 ◽  
Vol 297-300 ◽  
pp. 521-526
Author(s):  
Insu Jeon ◽  
Masaki Omiya ◽  
Hirotsugu Inoue ◽  
Kikuo Kishimoto ◽  
Tadashi Asahina

A new specimen is proposed to measure the interfacial toughness between the Al-0.5%Cu thin film and the Si substrate. The plain and general micro-fabrication processes are sufficient to fabricate the specimen. With the help of the finite element method and the concepts of the linear elastic fracture mechanics, the detailed structure for this specimen is modeled and evaluated. The results obtained from this research show that the proposed specimen provides efficient and convenient method to measure the interfacial toughness between the Al-Cu thin film and the Si substrate.


Sign in / Sign up

Export Citation Format

Share Document