Novel sandwich structure of composite-metal laminates based on cellulosic woven pineapple leaf fibre

2020 ◽  
pp. 109963622093147
Author(s):  
Ng Lin Feng ◽  
Sivakumar Dhar Malingam ◽  
Noordiana Mohd Ishak ◽  
Kathiravan Subramaniam

Fibre metal laminates (FMLs) are the contemporary sandwich materials that have been employed in the aerospace industries. The commercially available synthetic fibre based FMLs have shown excellent fatigue, impact and specific properties over those of metallic alloys. In order to explore the potential of environmental friendly cellulosic based materials, this research work aims to characterise the mechanical properties of novel woven pineapple leaf fibre reinforced metal laminates which were prepared through the hot compression moulding technique. For the comparison purpose, the mechanical properties of woven pineapple leaf fabrics and pineapple leaf fibre reinforced composite laminates were determined as well. It was concluded that the pineapple leaf fibre reinforced metal laminates evidenced salient mechanical and specific properties over pineapple leaf fabrics and composites. The specific tensile strength of metal laminates was 230.87% and 62.21% higher than those of the pineapple leaf fabrics and composite laminates whereas the specific flexural strength of metal laminates was 174.91% higher than composite laminates. Besides that, metal laminates also showed an impact strength of 91.49 kJ/m2 which was 143.13% greater than that of the composite laminates. The results indeed showed that the pineapple based FMLs could be considered as the promising and sustainable sandwich materials in future structural applications.

2020 ◽  
pp. 073168442095671
Author(s):  
Ng Lin Feng ◽  
Sivakumar Dhar Malingam ◽  
Chen Wei Ping

Fibre metal laminates are advanced sandwich materials that offer various outstanding properties over conventional metallic alloys and composites. This research study intends to investigate the effects of weaving architectures and stacking configurations on the mechanical properties of fibre metal laminates based on kenaf/pineapple leaf fibre. Fibre metal laminates were fabricated through the hot moulding compression technique. Mechanical tests were performed on the kenaf/pineapple leaf fibre-based fibre metal laminates. In accordance with the findings obtained, hybridisation had led to the improvement in the mechanical properties of fibre metal laminates in comparison with [K/K/K] fibre metal laminates. Overall, twill woven-ply [P/P/P] fibre metal laminates showed the highest tensile and flexural strength, which was 14.53% and 33.50% higher than twill woven-ply [K/K/K] fibre metal laminates, respectively. Besides, the twill woven-ply [P/P/P] fibre metal laminates also displayed the highest impact strength and indentation properties compared to other non-hybrid and hybrid fibre metal laminates. When comparing the fibre metal laminates with different weaving architectures, twill woven-ply fibre metal laminates were shown to have higher mechanical properties over those of plain woven-ply fibre metal laminates.


2016 ◽  
Vol 694 ◽  
pp. 8-12 ◽  
Author(s):  
M.Y. Yuhazri ◽  
G.C.H. Nilson ◽  
Haeryip Sihombing ◽  
Mohd Edeerozey Abd Manaf

The aim of this study is to evaluate the mechanical properties and study the failure of laminated glass reinforced composite coated with gelcoat of different thickness. Firstly, the gelcoat was applied to the mould using brush and subsequently, glass fiber reinforced composite laminates were fabricated on it using vacuum bagging technique. The mechanical properties of the composites various were tested by using tensile and three-point flexural tests. The fracture behaviour of different gelcoat thickness was observed using scanning electron microscope (SEM) to determine the failure behaviour that occurred. The flexural test was performed in two ways, i.e., gelcoat layer facing top and facing down. For both flexural tests, composite coated with 0.30 mm thick of gelcoat shows the highest mechanical strength. Tensile test is useful to investigate the interfacial bonding in between gelcoat and laminate composite. The composite coated with 0.40 mm of gelcoat showed the highest tensile strength, an increase of 38 % compared to the uncoated composite. It was observed that an increase in gelcoat thickness increased the brittleness of the laminated composite. From the failure analysis, failures were caused by the delamination of matrix between the plies, while the gelcoat was still strongly bonded with composite laminate.


2021 ◽  
pp. 073168442110584
Author(s):  
Madavan Prabakaran ◽  
Siddharthan Arjunan

Fibre architecture of glass fibre (GF) reinforced polymer composites has a major impact on the mechanical properties for structural applications. In this study, a novel continuous glass fibre non-woven GF mat based on Spirograph art pattern is laid using a customized mechanical system. Spirograph-based continuous glass fibre non-woven (SNW) mat of different patterns was prepared and GF laminate epoxy composites were fabricated with the aim of achieving quasi-isotropic mechanical properties. The samples were cut to dimensions of test specimens from various identical locations symmetrically from a circular-shaped SNW composite laminates which were subjected to flexural, impact, shear and modified compression with anti-buckling tests. One particular SNW pattern composite laminate exhibited 40.82% better impact and 49.01% better shear resistance than commercial 0°/90° woven roving mat composite. The developed SNW laminate composite had quasi-isotropic fibre orientation and better mechanical properties without any stitching and interlacing as in case of woven fibre laminate composite.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3842
Author(s):  
Adnan Amjad ◽  
M. Shukur Zainol Abidin ◽  
Hassan Alshahrani ◽  
Aslina Anjang Ab Rahman

Natural fibre-based materials are gaining popularity in the composites industry, particularly for automotive structural and semi-structural applications, considering the growing interest and awareness towards sustainable product design. Surface treatment and nanofiller addition have become one of the most important aspects of improving natural fibre reinforced polymer composite performance. The novelty of this work is to examine the combined effect of fibre surface treatment with Alumina (Al2O3) and Magnesia (MgO) nanofillers on the mechanical (tensile, flexural, and impact) behaviour of biotex flax/PLA fibre reinforced epoxy hybrid nanocomposites. Al2O3 and MgO with a particle size of 50 nm were added in various weight proportions to the epoxy and flax/PLA fibre, and the composite laminates were formed using the vacuum bagging technique. The surface treatment of one set of fibres with a 5% NaOH solution was investigated for its effect on mechanical performance. The results indicate that the surface-treated reinforcement showed superior tensile, flexural, and impact properties compared to the untreated reinforcement. The addition of 3 wt. % nanofiller resulted in the best mechanical properties. SEM morphological images demonstrate various defects, including interfacial behaviour, fibre breakage, fibre pullout, voids, cracks, and agglomeration.


2020 ◽  
Vol 16 (6) ◽  
pp. 1709-1729
Author(s):  
Sagar Dnyandev Patil ◽  
Yogesh J. Bhalerao

PurposeIt is seen that little amount of work on optimization of mechanical properties taking into consideration the combined effect of design variables such as stacking angle, stacking sequence, different resins and thickness of composite laminates has been carried out. The focus of this research work is on the optimization of the design variables like stacking angle, stacking sequence, different resins and thickness of composite laminates which affect the mechanical properties of hybrid composites. For this purpose, the Taguchi technique and the method of gray relational analysis (GRA) are used to identify the optimum combination of design variables. In this case, the effect of the abovementioned design variables, particularly of the newly developed resin (NDR) on mechanical properties of hybrid composites has been investigated.Design/methodology/approachThe Taguchi method is used for design of experiments and with gray relational grade (GRG) approach, the optimization is done.FindingsFrom the experimental analysis and optimization study, it was seen that the NDR gives excellent bonding strength of fibers resulting in enhanced mechanical properties of hybrid composite laminates. With the GRA method, the initial setting (A3B2C4D2) was having GRG 0.866. It was increased by using a new optimum combination (A2B2C4D1) to 0.878. It means that there is an increment in the grade by 1.366%. Therefore, using the GRA approach of analysis, design variables have been successfully optimized to achieve enhanced mechanical properties of hybrid composite laminates.Originality/valueThis is an original research work.


2016 ◽  
Vol 16 ◽  
pp. 1-6 ◽  
Author(s):  
S. Nallusamy

Over the past two decades it has been established that composite materials are the leading emerging materials. The natural fibres present a number of advantages over traditional synthetic fibres because of their better corrosion resistance, excellent thermo-mechanical properties and high strength to weight ratio. Also the composite materials play an important role in maintaining the eco-friendly design requirements. Among this, polymer matrix composite is one of the recent developing sectors on the composite field, because it has high strength with less density as compared to the metal matrix composite. Depending on the applications, the properties of the polymer reinforced composite are improved by modifying compositions, process of fabrication and direction of fibre etc. In this analysis the Roselle Fibre (Hibiscus Sabdariffa) is reinforced with polymer composite by wt % in the mode of compression molding. The mechanical properties of the above fabricated material were analyzed by ASTM Standards and also the characterization of polymer composites were analysed using SEM. The compressive strength and the hardness value were high as compared to other strength properties; hence it is more suitable for compressive and structural applications. The results concluded that the treated fibre with chemical reveals better compatibility with polymer matrix than that of untreated fibre.


2019 ◽  
Vol 8 (4) ◽  
pp. 2370-2372

This Research work explains the Mechanical properties of Flexural test, Tensile test, Impact test and SEM analysis of Sansevieria Trifasciata fiber (STF), Carbon fiber (CF) [1] hybrid polymer composites. The Hybrid Composite laminates were created with five different fiber % of STF (0%, 10%, 20%, 30% and 40%) and % of Carbon Fiber (100%, 90%, 80%, 70% and 60%). The manufacturing process was completed by hand layup technique. Mechanical properties of Hybrid Composite laminates were included to Tensile, Flexural and Impact testing. The SEM shows fiber debonding and de-lamination of fiber and resin can be observed. The explanation covers that Flexural, Tensile and Impact quality increases without affecting the extension of the Hybrid Composite with fiber extents


2021 ◽  
Vol 9 ◽  
Author(s):  
Alpa Tapan Bhatt ◽  
◽  
Piyush P Gohil ◽  
Vijaykumar Chaudhary ◽  
◽  
...  

Vacuum assisted resin transfer molding (VARTM) is a fiber reinforced composite (FRC) making process in which resin is impregnated to fabric by application of vacuum. This process is also known as vacuum infusion process. The critical issue in VARTM process is void generation. Voids form due to variety of reasons, most of which can be avoided. Vacuum degassing is one of the solutions which will reduce air entrapped inside resin during impregnation. In this work six laminates from jute and polyester resin were prepared, three with degassing and three without degassing with variation in number of jute layers 5, 10 and 15 respectively. Microscopic examination and mechanical properties have been observed before and after degassing. It was observed that degassing improves mechanical properties of composite laminates and reduce void content. It was observed that the thickness variation in laminate increased as number of layer increased.


Sign in / Sign up

Export Citation Format

Share Document