scholarly journals Descent of Bacteria and Eukarya From an Archaeal Root of Life

2020 ◽  
Vol 16 ◽  
pp. 117693432090826
Author(s):  
Xi Long ◽  
Hong Xue ◽  
J Tze-Fei Wong

The 3 biological domains delineated based on small subunit ribosomal RNAs (SSU rRNAs) are confronted by uncertainties regarding the relationship between Archaea and Bacteria, and the origin of Eukarya. The similarities between the paralogous valyl-tRNA and isoleucyl-tRNA synthetases in 5398 species estimated by BLASTP, which decreased from Archaea to Bacteria and further to Eukarya, were consistent with vertical gene transmission from an archaeal root of life close to Methanopyrus kandleri through a Primitive Archaea Cluster to an Ancestral Bacteria Cluster, and to Eukarya. The predominant similarities of the ribosomal proteins (rProts) of eukaryotes toward archaeal rProts relative to bacterial rProts established that an archaeal parent rather than a bacterial parent underwent genome merger with bacteria to generate eukaryotes with mitochondria. Eukaryogenesis benefited from the predominantly archaeal accelerated gene adoption (AGA) phenotype pertaining to horizontally transferred genes from other prokaryotes and expedited genome evolution via both gene-content mutations and nucleotidyl mutations. Archaeons endowed with substantial AGA activity were accordingly favored as candidate archaeal parents. Based on the top similarity bitscores displayed by their proteomes toward the eukaryotic proteomes of Giardia and Trichomonas, and high AGA activity, the Aciduliprofundum archaea were identified as leading candidates of the archaeal parent. The Asgard archaeons and a number of bacterial species were among the foremost potential contributors of eukaryotic-like proteins to Eukarya.

2019 ◽  
Author(s):  
Heather A. Feaga ◽  
Mykhailo Kopylov ◽  
Jenny Kim Kim ◽  
Marko Jovanovic ◽  
Jonathan Dworkin

AbstractThe formation of ribosome dimers during periods of quiescence is widespread among bacteria and some higher eukaryotes. However, the mechanistic importance of dimerization is not well understood. In bacteria ribosome dimerization is mediated by the Hibernation Promoting Factor (HPF). Here, we report that HPF from the Gram-positive bacterium Bacillus subtilis preserves active ribosomes by preventing the loss of essential ribosomal proteins. Ribosomes isolated from strains either lacking HPF (Δhpf) or encoding a mutant allele of HPF that binds the ribosome but does not mediate dimerization were substantially depleted of the small subunit proteins S2 and S3. Strikingly, these proteins are located at the ribosome dimer interface. We used single particle cryo-EM to further characterize ribosomes isolated from a Δhpf mutant strain and observed that many were missing S2, S3, or both. These data support a model in which the ribosome dimerization activity of HPF evolved to protect labile proteins that are essential for ribosome function.Significance StatementWhen nutrients become scarce, many bacterial species enter an extended state of quiescence. A major challenge of this state is how to attenuate protein synthesis, the most energy consuming cellular process, while preserving ribosomes for the return to favorable conditions. Here, we show that the ribosome-binding protein HPF which dimerizes ribosomes functions to protect essential ribosomal proteins at the dimer interface. HPF is almost universally conserved in bacteria and HPF deletions in diverse species exhibit decreased viability under nutrient limitation. Our data provide mechanistic insight into this phenotype and establish a role for HPF in maintaining translationally competent ribosomes during quiescence.


2019 ◽  
Author(s):  
Xi Long ◽  
Hong Xue ◽  
J. Tze-Fei Wong

AbstractThe three biological domains delineated based on SSU rRNAs are confronted by uncertainties regarding the relationship between Archaea and Bacteria, and the origin of Eukarya. Herein the homologies between the paralogous valyl-tRNA and isoleucyl-tRNA synthetases in a wide spectrum of species revealed vertical gene transmission from an archaeal root of life through a Primitive Archaea Cluster to an Ancestral Bacteria Cluster of species. The higher homologies of the ribosomal proteins (rProts) of eukaryotic Giardia toward archaeal relative to bacterial rProts established that an archaeal-parent rather than a bacterial-parent underwent genome merger with an alphaproteobacterium to generate Eukarya. Moreover, based on the top-ranked homology of the proteins of Aciduliprofundum among archaea toward the Giardia and Trichomonas proteomes and the pyruvate phosphate dikinase of Giardia, together with their active acquisition of exogenous bacterial genes plausibly through foodchain gene adoption, the Aciduliprofundum archaea were identified as leading candidates for the archaeal-parent of Eukarya.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ryo Matsuzaki ◽  
Shigekatsu Suzuki ◽  
Haruyo Yamaguchi ◽  
Masanobu Kawachi ◽  
Yu Kanesaki ◽  
...  

Abstract Background Pyrenoids are protein microcompartments composed mainly of Rubisco that are localized in the chloroplasts of many photosynthetic organisms. Pyrenoids contribute to the CO2-concentrating mechanism. This organelle has been lost many times during algal/plant evolution, including with the origin of land plants. The molecular basis of the evolutionary loss of pyrenoids is a major topic in evolutionary biology. Recently, it was hypothesized that pyrenoid formation is controlled by the hydrophobicity of the two helices on the surface of the Rubisco small subunit (RBCS), but the relationship between hydrophobicity and pyrenoid loss during the evolution of closely related algal/plant lineages has not been examined. Here, we focused on, the Reticulata group of the unicellular green algal genus Chloromonas, within which pyrenoids are present in some species, although they are absent in the closely related species. Results Based on de novo transcriptome analysis and Sanger sequencing of cloned reverse transcription-polymerase chain reaction products, rbcS sequences were determined from 11 strains of two pyrenoid-lacking and three pyrenoid-containing species of the Reticulata group. We found that the hydrophobicity of the RBCS helices was roughly correlated with the presence or absence of pyrenoids within the Reticulata group and that a decrease in the hydrophobicity of the RBCS helices may have primarily caused pyrenoid loss during the evolution of this group. Conclusions Although we suggest that the observed correlation may only exist for the Reticulata group, this is still an interesting study that provides novel insight into a potential mechanism determining initial evolutionary steps of gain and loss of the pyrenoid.


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Matthew R. Olm ◽  
Alexander Crits-Christoph ◽  
Spencer Diamond ◽  
Adi Lavy ◽  
Paula B. Matheus Carnevali ◽  
...  

ABSTRACT Longstanding questions relate to the existence of naturally distinct bacterial species and genetic approaches to distinguish them. Bacterial genomes in public databases form distinct groups, but these databases are subject to isolation and deposition biases. To avoid these biases, we compared 5,203 bacterial genomes from 1,457 environmental metagenomic samples to test for distinct clouds of diversity and evaluated metrics that could be used to define the species boundary. Bacterial genomes from the human gut, soil, and the ocean all exhibited gaps in whole-genome average nucleotide identities (ANI) near the previously suggested species threshold of 95% ANI. While genome-wide ratios of nonsynonymous and synonymous nucleotide differences (dN/dS) decrease until ANI values approach ∼98%, two methods for estimating homologous recombination approached zero at ∼95% ANI, supporting breakdown of recombination due to sequence divergence as a species-forming force. We evaluated 107 genome-based metrics for their ability to distinguish species when full genomes are not recovered. Full-length 16S rRNA genes were least useful, in part because they were underrecovered from metagenomes. However, many ribosomal proteins displayed both high metagenomic recoverability and species discrimination power. Taken together, our results verify the existence of sequence-discrete microbial species in metagenome-derived genomes and highlight the usefulness of ribosomal genes for gene-level species discrimination. IMPORTANCE There is controversy about whether bacterial diversity is clustered into distinct species groups or exists as a continuum. To address this issue, we analyzed bacterial genome databases and reports from several previous large-scale environment studies and identified clear discrete groups of species-level bacterial diversity in all cases. Genetic analysis further revealed that quasi-sexual reproduction via horizontal gene transfer is likely a key evolutionary force that maintains bacterial species integrity. We next benchmarked over 100 metrics to distinguish these bacterial species from each other and identified several genes encoding ribosomal proteins with high species discrimination power. Overall, the results from this study provide best practices for bacterial species delineation based on genome content and insight into the nature of bacterial species population genetics.


Genome ◽  
1999 ◽  
Vol 42 (2) ◽  
pp. 361-362 ◽  
Author(s):  
Alexander E Vinogradov

At a certain temperature, which is a compromise for temperatures at which the species are adapted, the relationship between genome size and cell cycle duration during synchronous cleavage divisions can be very strong (r = 1.00, P < 0.01) in four closely related frogs, suggesting a functional dependence.Key words: genome size, genome evolution, genome cytoecology, noncoding DNA, cell cycle duration.


Author(s):  
Fei Wang ◽  
Deyu Zhang ◽  
Dejiu Zhang ◽  
Peifeng Li ◽  
Yanyan Gao

Mitochondria are one of the most important organelles in cells. Mitochondria are semi-autonomous organelles with their own genetic system, and can independently replicate, transcribe, and translate mitochondrial DNA. Translation initiation, elongation, termination, and recycling of the ribosome are four stages in the process of mitochondrial protein translation. In this process, mitochondrial protein translation factors and translation activators, mitochondrial RNA, and other regulatory factors regulate mitochondrial protein translation. Mitochondrial protein translation abnormalities are associated with a variety of diseases, including cancer, cardiovascular diseases, and nervous system diseases. Mutation or deletion of various mitochondrial protein translation factors and translation activators leads to abnormal mitochondrial protein translation. Mitochondrial tRNAs and mitochondrial ribosomal proteins are essential players during translation and mutations in genes encoding them represent a large fraction of mitochondrial diseases. Moreover, there is crosstalk between mitochondrial protein translation and cytoplasmic translation, and the imbalance between mitochondrial protein translation and cytoplasmic translation can affect some physiological and pathological processes. This review summarizes the regulation of mitochondrial protein translation factors, mitochondrial ribosomal proteins, mitochondrial tRNAs, and mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in the mitochondrial protein translation process and its relationship with diseases. The regulation of mitochondrial protein translation and cytoplasmic translation in multiple diseases is also summarized.


Sign in / Sign up

Export Citation Format

Share Document