Study on the performance of novel gas foil conical bearings

Author(s):  
Hongyang Hu ◽  
Ming Feng ◽  
Tianming Ren

To reduce the mass and size of low-power turbine machinery, a new type of gas foil conical bearing was proposed, and its static and dynamic performance was systematically studied. Based on a nonlinear bump stiffness model considering rounding and friction, the structural stiffness distribution, load capacity, dynamic stiffness, and damping coefficients of gas foil conical bearing were calculated, and the influence of bearing parameters on its static and dynamic characteristics was studied. In addition, a pair of gas foil conical bearings was used to replace the traditional radial-thrust foil bearing support scheme on an air compressor to explore the practicability of the novel bearing. The results show that the new gas foil conical bearing has an excellent supporting performance and broad prospects for application. The bump radius, rounding radius, friction coefficients, and foil thickness will significantly influence the bump foil stiffness. The bearing parameters such as structural stiffness, nominal clearance, cone angle, and eccentricity have a large effect on its static and dynamic performance, and we can obtain the desired bearing characteristics by tailoring these parameters.

Author(s):  
Hailong Cui ◽  
Yang Wang ◽  
Xiaobin Yue ◽  
Yifei Li ◽  
Zhengyi Jiang

This study utilizes a dynamic mesh technology to investigate the dynamic performance of aerostatic thrust bearings with orifice restrictor, multiple restrictors, and porous restrictor. An experiment, which investigates the bearing static load capacity, was carried out to verify the calculation accuracy of dynamic mesh technology. Further, the impact of incentive amplitude, incentive frequency, axial eccentricity ratio, and non-flatness on the bearing dynamic performance was also studied. The results show incentive amplitude effect can be ignored at the condition of amplitude less than 5% film thickness, while the relationship between dynamic characteristics and incentive frequency presented a strong nonlinear relationship in the whole frequency range. The change law of dynamic stiffness and damping coefficient for porous restrictor was quite different from orifice restrictor and multiple restrictors. The bearing dynamic performance increased significantly with the growth of axial eccentricity ratio, and the surface non-flatness enhanced dynamic performance of aerostatic thrust bearings.


2020 ◽  
Vol 72 (10) ◽  
pp. 1189-1197
Author(s):  
Hongyang Hu ◽  
Ming Feng ◽  
Tianming Ren

Purpose This paper aims to study the bearing performance with different cone angle errors, to study the effect law of manufacturing taper error on the properties of gas foil conical bearing (GFCB). Design/methodology/approach For the GFCB supported by separated bump foil strips, a nonlinear structure stiffness model considering Coulomb friction and arch characteristics was proposed. The finite element method and finite difference method were used to solve the Reynolds equation and the film thickness equation by coupling, and the properties of the GFCB were obtained. The effect of foil and bearing structure parameters on the static and dynamic performance under different taper error cases was analyzed. Moreover, a test on the air compressor supported by GFCBs was conducted to verify the practicability. Findings The taper error has a largely adverse effect on the load capacity of GFCB. When the taper error is −0.03°, the radial load capacity Fr and axial load capacity Fz decrease by 37.5 and 58.3%, respectively. The taper error decreases the direct stiffness and cross-coupled damping of GFCB, which will weaken the bearing stability. Moreover, the performance of GFCB is closely related to the foil and bearing parameters. Originality/value The taper error adversely affects the static and dynamic characteristics of GFCB, which should be concerned by bearing designers, researchers and academicians. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2020-0089/


Author(s):  
M. J. Conlon ◽  
A. Dadouche ◽  
W. M. Dmochowski ◽  
R. Payette ◽  
J.-P. Be´dard

Oil-free foil bearing technology has advanced intermittently over the years, driven by research efforts to improve both steady-state and dynamic performance characteristics, namely: load capacity, stiffness, and damping. Bearing designs are thus classified according to “generation”, with first-generation bearings being the most primitive. This paper presents an experimental evaluation of a first- and a second-generation foil bearing, and aims to provide the high-fidelity data necessary for proper validation of theoretical predictive models of foil bearing performance. The aforementioned test bearings were fabricated in-house, and are both 70mm in diameter with an aspect ratio of 1; bearing manufacturing details are provided. The work makes use of a facility dedicated to measuring both the steady-state and dynamic properties of foil bearings under a variety of controlled operating conditions. The bearing under test is placed at the midspan of a horizontal, simply-supported, stepped shaft which rotates at up to 60krpm. Static and dynamic loads of up to 3500N and 450N (respectively) can be applied by means of a pneumatic cylinder and two electrodynamic shakers. The bearings’ structural (static) stiffnesses are highly nonlinear, and this affects the accuracy of the dynamic coefficient determination. Both dynamic stiffness and damping are found to vary nonlinearly with excitation frequency, and are over-predicted by a structural experimental evaluation — the film plays an important role in bearing dynamics. The second-generation bearing is found to have a higher load capacity, dynamic stiffness, and damping than the first-generation bearing.


Author(s):  
Jiale Tian ◽  
Baisong Yang ◽  
Lie Yu ◽  
Jian Zhou

Journal bearing is one of the most important components for supporting high speed rotating machinery such as compressors and turbo machines. In recent trends, non-circular journal bearings (lemon bearing, three-lobe bearing, four-lobe bearing, etc.), for their greater load capacity and better stability, have become a superior choice and found wide spread application. In this paper, the nonlinear oil film force is expressed using the dynamic stiffness and damping of 1st-3rd order. And the film thickness and pressure are analyzed using Fourier method, so that the corresponding harmonic components and their deeper connection can be further explored. The paper shows that the nonlinear dynamic performances are connected closely with the bearings’ profile, and lays the foundation for expressing the precise nonlinear oil film force.


Author(s):  
Ahmad W. Yacout

This study has theoretically analyzed the surface roughness, centripetal inertia and recess volume fluid compressibility effects on the dynamic behavior of a restrictor compensated hydrostatic thrust spherical clearance type of bearing. The stochastic Reynolds equation, with centripetal inertia effect, and the recess flow continuity equation with recess volume fluid compressibility effect have been derived to take into account the presence of roughness on the bearing surfaces. On the basis of a small perturbations method, the dynamic stiffness and damping coefficients have been evaluated. In addition to the usual bearing design parameters the results for the dynamic stiffness and damping coefficients have been calculated for various frequencies of vibrations or squeeze parameter (frequency parameter) and recess volume fluid compressibility parameter. The study shows that both of the surface roughness and the centripetal inertia have slight effects on the stiffness coefficient and remarkable effects on the damping coefficient while the recess volume fluid compressibility parameter has the major effect on the bearing dynamic characteristics. The cross dynamic stiffness showed the bearing self-aligning property and the ability to oppose whirl movements. The orifice restrictor showed better dynamic performance than that of the capillary tube.


Author(s):  
Hongyang Hu ◽  
Ming Feng

The integral bump foil strip cannot optimize the performance for the compliant conical foil bearing (CFB) as the uneven distribution of structural stiffness. To maximize the bearing characteristics, this paper proposed different bump foil schemes. Firstly, the anisotropy of CFB was studied based on the nonlinear bump stiffness model, and the circumferentially separated foil structure was proposed. Moreover, an axially separated bump foil structure with the variable bump length was introduced to make the axial stiffness distribution more compliant with the gas pressure. In addition, the effect of foil thickness was also discussed. The results show that CFB with integral bump foil exhibits obvious anisotropy, and the suggested installation angle for largest load capacity and best dynamic stability are in the opposite position. Fortunately, a circumferential separated bump foil can improve this defect. The characteristics of CFB with axial separated foil structure can be improved significantly, especially for that with more strips and the variable bump half-length design. The suitable bump and top foil thickness should be set considering the improved supporting performance and proper flexibility. The results can give some guidelines for the design of CFB.


2004 ◽  
Vol 129 (1) ◽  
pp. 154-161 ◽  
Author(s):  
Mohsen Salehi ◽  
Hooshang Heshmat ◽  
James F. Walton

This paper presents the results of an experimental investigation into the dynamic structural stiffness and damping characteristics of a 21.6‐cm(8.5in.)-diameter compliant surface foil journal bearing. The goal of this development was to achieve high levels of damping without the use of oil, as is used in squeeze film dampers, while maintaining a nearly constant dynamic stiffness over a range of frequencies and amplitudes of motion. In the experimental work described herein, a full compliant foil bearing was designed, fabricated, and tested. The test facility included a non-rotating journal located inside the bearing. The journal was connected to an electrodynamic shaker so that dynamic forces simulating expected operating conditions could be applied to the structurally compliant bump foil elements. Excitation test frequencies to a maximum of 400Hz at amplitudes of motion between 25.4 and 102μm were applied to the damper assembly. During testing, both compressive preload and unidirectional static loads of up to 1335 and 445N, respectively, were applied to the damper assembly. The experimental data from these tests were analyzed using both a single degree of freedom model and an energy method. These methods of data analysis are reviewed here and results are compared. Excellent agreement in results obtained from the two methods was achieved. Equivalent viscous damping coefficients as high as 1050N.s∕cm(600lbf.s∕in) were obtained at low frequencies. Dynamic stiffness was shown to be fairly constant with frequency.


1982 ◽  
Vol 104 (4) ◽  
pp. 491-496 ◽  
Author(s):  
M. K. Ghosh ◽  
B. C. Majumdar

This paper deals with an analysis of the dynamic behavior of compensated hydrostatic circular step thrust bearings taking into account fluid inertia and recess volume fluid compressibility effects. The Reynolds equation for fluid film and the recess flow continuity equations are linearized using perturbation methods. Results in terms of dimensionless load capacity, oil flow rate, stiffness, and damping are presented for capillary and orifice compensated bearings. Results show a marked influence of fluid inertia and recess volume fluid compressibility on the performance of the bearing.


Author(s):  
Mohsen Salehi ◽  
Hooshang Heshmat ◽  
James F. Walton

This paper presents the results of an experimental investigation into the dynamic structural stiffness and damping characteristics of a 21.6 cm (8.5inch) diameter compliant surface foil journal bearing. The goal of this development was to achieve high levels of damping without the use of oil, as is used in squeeze film dampers, while maintaining a nearly constant dynamic stiffness over a range of frequencies and amplitudes of motion. In the experimental work described herein, a full compliant foil bearing was designed, fabricated and tested. The test facility included a non-rotating journal located inside the bearing. The journal was connected to an electrodynamic shaker so that dynamic forces simulating expected operating conditions could be applied to the structurally compliant bump foil elements. Excitation test frequencies to a maximum of 400 Hz at amplitudes of motion between 25.4μm to 102μm were applied to the damper assembly. During testing, both compressive preload and unidirectional static loads of up to 1335N and 445N, respectively, were applied to the damper assembly. The experimental data from these tests were analyzed using both a single degree of freedom model and an energy method. These methods of data analysis are reviewed here and results are compared. Excellent agreement in results obtained from the two methods was achieved. Equivalent viscous damping coefficients as high as 1050 N.s/cm (600 lbf.s/in) were obtained at low frequencies. Dynamic stiffness was shown to be fairly constant with frequency.


2021 ◽  
Vol 2108 (1) ◽  
pp. 012087
Author(s):  
Lishan Xu ◽  
Weizheng Zhang ◽  
Junjie Lu ◽  
Zhu Liu

Abstract The high requirements for sealing performance in high-speed rotating machinery has led to the design of floating seal with annular spiral groove that offer the advantages of low leakage and extended stability. However, efforts to model the dynamic performance of these floating seal have suffered from the great complexity of the flow field. The present work addresses this issue by establishing a transient Reynolds formulation of a floating seal with annular spiral groove in a rotating coordinate system based on the small perturbation method. In addition, the influence of radial eccentricity and film thickness on the solution divergence and calculation accuracy is calculated. The dynamic stiffness and dynamic damping matrixes are built. Then the variation rules of the dynamic stiffness and damping coefficient of the gas film with structure and working conditions are investigated in detail. The results show that the floating ring seal is more suitable for the service conditions of small film thickness, low pressure, high speed and large eccentricity. Accordingly, the results obtained lay a theoretical foundation for evaluating real-world applications of floating ring seal.


Sign in / Sign up

Export Citation Format

Share Document