Study on the mutual influence of surface roughness and texture features of rough-textured surfaces on the tribological properties

Author(s):  
Chunxing Gu ◽  
Xianghui Meng ◽  
Shuwen Wang ◽  
Xiaohong Ding

In recent years, the efforts to better control friction and wear have focused on surface topography modification through surface texturing. To study the mutual influence of surface roughness and texture features, this paper developed one comprehensive mathematical model of mixed lubrication to study the tribological performance of the rough-textured conjunction. The typical ring-liner conjunction was chosen as the research object. In particular, the effects of skewness and kurtosis were considered based on the non-Gaussian distribution of asperity height. In this way, the influences of non-Gaussian distribution properties and surface texturing on the tribological performance were analyzed. The results show that the influences of skewness and kurtosis on the tribological performance are nontrivial and should not be neglected in the mixed lubrication. Compared to the Gaussian distribution, considering the non-Gaussian distribution can represent the physical rough surfaces more accurately. Surfaces with negative skewness were found to generally result in better tribological properties. Moreover, the tribological performance improved by surface texturing can also be improved or reduced by the effect of skewness and kurtosis. As a result, the optimization of surface texturing should take the effects of roughness parameters into account.

Author(s):  
M Sedlaček ◽  
B Podgornik ◽  
J Vižintin

The aim of this research was to confirm skewness and kurtosis parameters as two main roughness parameters which describe tribological properties of contact surfaces, especially pointing out their application in surface texturing. Based on our previous virtual texturing findings, steel samples were laser textured in a manner to achieve micro-channels with different spacing and width of the channels. Lubricated tests under different contact conditions were done to evaluate their influence on friction. It was confirmed that higher Sku and more negative Ssk can be used for planning surface texturing.


Author(s):  
Annadi Ramana Reddy ◽  
Syed Ismail

To enhance the tribological performance of mechanical parts, one of the reliable methods is surface topography modification, in which the surface of one/both interacting contacts were to be modified. Surface texturing is one of the surface modification techniques. In the present work, a numerical code is developed to address the effect of texture shape (elliptical and triangular), size and distribution (parallel and zigzag) on the tribological performance parameters (minimum film thickness, percentage of hydrodynamic load from the total generated pressure and frictional coefficient) under mixed lubrication regime for a known value of load support. In the present analysis, the mass conservative, i.e. Jakobson-Floberg-Ollson (JFO) cavitation condition and couple stresses of lubricant are considered. In addition, surface irregularities are considered by using the flow factors of Patir-Cheng model. The results show that texture shape has a significant effect, whereas the texture distribution has a slight effect on the tribological performance parameters. Moreover, the couple stress of lubricant has a prominent effect on the tribological performance.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Chunxing Gu ◽  
Xianghui Meng ◽  
Shuwen Wang ◽  
Xiaohong Ding

Abstract In order to find the effects of surface topography on the tribological properties of the rough textured surfaces, an improved mixed lubrication model allowing specifying the standard deviation, the skewness, and the kurtosis was developed. In this model, by considering the non-Gaussian properties of rough surfaces, an improved average flow model was combined with a modified statistical elastoplastic asperity contact model. The performances of the slider bearings with two arrays of anisotropic textures were studied in terms of Stribeck curves. It appears that the tribological properties of the anisotropic textures are sensitive to the sliding direction. Meanwhile, the surfaces with more negative skewness or the lower kurtosis can obtain better tribological performances related to friction and wear.


Author(s):  
Bifeng Yin ◽  
Shao Sun ◽  
Bowen Wang ◽  
Yanqiang Qian

With the increasingly stringent requirements on energy saving and environmental-friendly for internal combustion (IC) engine, new concepts like novel combustion mode and surface texturing technology have emerged. In order to have deep understanding about the application effects of surface texturing into IC engine with new combustion mode, a mixed lubrication calculation model considering surface textures on cylinder liner together with different combustion modes has been built in the present work based on a four-cylinder diesel engine. The numerical research was conducted on the change of the surface tribological performance of textured cylinder liner under different combustion modes. The simulation results indicate that compared with the conventional combustion (CC) mode, the combustion phase of premixed charge combustion ignition (PCCI) mode and retarded injection (RI) mode varies and their in-cylinder peak pressure is different at the beginning of power stroke due to different injection strategies applied, which lead to significant differences between piston ring radial working loads. Near TDC, the mixed lubrication duration of PCCI and RI mode increases slightly in comparison to that of CC mode, and these three boundary lubrication durations are almost same. However, the thickness of lubricant film between friction pair of three modes is quite different, resulting in their different tribological properties. Among these parameters, the dimensionless total friction force (DTFF) and the dimensionless friction work of PCCI mode increase by 82.37% and 18.41% at most, respectively, while those of RI mode decrease by 36.50% and 12.45% at most, respectively, compared with the same parameters of CC mode. Therefore, the variations in tribological property of the textured cylinder liner–piston ring (CLPR) with different combustion modes should not be ignored.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1203
Author(s):  
Sergei M. Pimenov ◽  
Evgeny V. Zavedeev ◽  
Olga S. Zilova ◽  
Alexander P. Lepekhov ◽  
Beat Jaeggi ◽  
...  

Diamond-like nanocomposite (DLN) films (a-C:H:Si:O films) are characterized by their unique structure and remarkable tribological properties to be pronounced under various environmental and surface modification conditions. In this paper, we investigated the effects of environments (humid air, water and oil lubrication, elevated temperatures) and laser surface texturing on tribological performance of DLN coatings. Femtosecond laser (wavelength 515 nm) was used for surface texturing. Comparative tests of DLN films sliding against different counterbodies (steel, Si3N4) in humid air and water demonstrated the low-friction and low-wear performance under water, in the absence of chemical interaction of water with the counterbody surface. The wear rates of the film and Si3N4 ball in water, 7.5 × 10−9 and 2.6 × 10−9 mm3/(Nm), were found to be considerably lower than the corresponding values 6.8 × 10−7 and 3.8 × 10−8 mm3/(Nm) in humid air, in spite of higher friction in water-lubricated sliding. Laser surface texturing of DLN films was performed to fabricate microcrater arrays, followed by tribological testing under oil lubrication at different temperatures, from 23 to 100 °C. The lubricated friction performance of laser-textured films was improved at both the room temperature and elevated temperatures. The friction coefficient was reduced from 0.1 (original film) to 0.083 for laser-textured film at room temperature, and then to 0.068 at 100 °C. The nano-/microfriction behavior of laser-structured surface characterized by lower friction forces than the original surface was demonstrated using friction force microscopy in ambient air. The obtained results demonstrate excellent tribological properties of DLN coatings in various environments, which can be further improved by femtosecond-laser-surface texturing.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jinlong Jiang ◽  
Qiong Wang ◽  
Yubao Wang ◽  
Zhang Xia ◽  
Hua Yang ◽  
...  

The titanium- and silicon-codoped a-C:H films were prepared at different applied bias voltage by magnetron sputtering TiSi target in argon and methane mixture atmosphere. The influence of the applied bias voltage on the composition, surface morphology, structure, and mechanical properties of the films was investigated by XPS, AFM, Raman, FTIR spectroscopy, and nanoindenter. The tribological properties of the films were characterized on an UMT-2MT tribometer. The results demonstrated that the film became smoother and denser with increasing the applied bias voltage up to −200 V, whereas surface roughness increased due to the enhancement of ion bombardment as the applied bias voltage further increased. The sp3carbon fraction in the films monotonously decreased with increasing the applied bias voltage. The film exhibited moderate hardness and the superior tribological properties at the applied bias voltage of −100 V. The tribological behaviors are correlated to the H/E or H3/E2ratio of the films.


2017 ◽  
Vol 61 (2) ◽  
pp. 295-303 ◽  
Author(s):  
Nihat A. Isitman ◽  
András Kriston ◽  
Tibor Fülöp

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Karl Niklas Hansson ◽  
Stig Hansson

The surface roughness affects the bone response to dental implants. A primary aim of the roughness is to increase the bone-implant interface shear strength. Surface roughness is generally characterized by means of surface roughness parameters. It was demonstrated that the normally used parameters cannot discriminate between surfaces expected to give a high interface shear strength from surfaces expected to give a low interface shear strength. It was further demonstrated that the skewness parameter can do this discrimination. A problem with this parameter is that it is sensitive to isolated peaks and valleys. Another roughness parameter which on theoretical grounds can be supposed to give valuable information on the quality of a rough surface is kurtosis. This parameter is also sensitive to isolated peaks and valleys. An implant surface was assumed to have a fairly well-defined and homogenous “semiperiodic” surface roughness upon which isolated peaks were superimposed. In a computerized simulation, it was demonstrated that by using small sampling lengths during measurement, it should be possible to get accurate values of the skewness and kurtosis parameters.


1995 ◽  
Vol 10 (8) ◽  
pp. 1984-1992 ◽  
Author(s):  
X.B. Zhou ◽  
J.Th.M. De Hosson

A this paper the influence of surface roughness on contact angles in the system of liquid Al wetting solid surfaces of Al2O3 has been studied. It was observed that contact angles of liquid Al vary significantly on different rough surfaces of Al2O3. A model is proposed to correlate contact angles with conventional roughness measurements and wavelengths by assuming a cosine profile of rough grooves with a Gaussian distribution of amplitudes. In comparison with the experimental results, the model provides a good estimate for describing the influence of surface roughness on contact angles of liquid Al on Al2O3.


Sign in / Sign up

Export Citation Format

Share Document