Physical, mechanical and dry sliding wear properties of non-woven viscose fabric epoxy-based polymer composites: An optimization study

Author(s):  
Debabrata Panda ◽  
Krunal M Gangawane

Polymer-based composites have been widely used in the enhanced tribological technologies of various automobile, aerospace industry, sports, etc. The epoxy-based polymer composites reinforced with glass fiber have significantly improved the wear inhibitors and ultimate strength along with ultra-low density than other available materials. This current research aims to fabricate a variation of such non-woven viscose-based polymer composites for various weight fractions (100–400 GSM) with a constant fiber loading of 30 wt% and subsequently analyze its physical, mechanical, and tribological properties under various operating parameters. The density of the fabricated composite exhibits an increase of magnitude with an increase in weight fraction. The composites consist of 400 GSM fabric showing a higher tensile, impact, flexural strength, hardness, and inter lamina shear strength (ILSS). A pin-on-disc wear set-up held dry sliding wear tests of various nonwoven viscose fabric-based composites under various operating parameters like sliding velocity, sliding distance, area density, and normal load. A Taguchi-based L16 orthogonal array design was utilized to estimate the optimal behavior for maximum wear resistance for operating conditions. The result reveals that the normal load over the composite contributes the highest towards wear on a composite compared to area density, sliding velocity, and distance. The wear phenomena have been verified with SEM micrographs to characterize various wear phenomena like fiber rapture, ploughing, micro-cracks, and wear lines.

2021 ◽  
pp. 2150106
Author(s):  
P. C. ELUMALAI ◽  
R. GANESH

In this work, the dry sliding wear behaviors of pure monolithic magnesium and magnesium–titanium dioxide (Mg–TiO2) composites were studied using pin-on-disc tribometer against an oil-hardened nonshrinking die steel (OHNS) counter-disc with a normal load of 0.5–2[Formula: see text]kg and a sliding velocity of 1.5–2.5[Formula: see text][Formula: see text] with the sliding distance and wear track diameter of 1500[Formula: see text]m and 90[Formula: see text]mm, respectively. The pin samples were characterized for their microstructural, nanomechanical and tribological properties such as wear rate, coefficient of friction and wear fractographs. Scanning electron microscopy (SEM) was used to analyze the worn-out surfaces of each pin sample in order to identify the different types of wear and wear mechanisms and the chemical constituents of each element were quantified by energy-dispersive spectroscopy. The influence of TiO2 reinforcements on the nanomechanical behavior was studied by nanoindentation technique. As compared with pure Mg, the nanoindentation strengths of Mg–1.5TiO2, Mg–2.5TiO2 and Mg–5TiO2 composites were found to increase by 11.9%, 22.2% and 35.8%, respectively, which was due to the addition of TiO2 particles and also due to the good bonding at the interface of TiO2 and magnesium particles. From the wear test results, a significant change in wear rate was observed with the change in normal load than that of sliding speed, whereas a significant change in coefficient of friction was noticed with the changes in both normal load and sliding velocity. The dominant wear mechanisms involved under the testing conditions were identified through plotting the contour maps and SEM fractographs. Also, from the fractographs it was noticed that delamination and plowing effect have been the significant wear mechanisms observed during low wear rate of samples, whereas melting, delamination and oxidation wear have been observed during high wear rate of pure Mg and its composites.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Naveed Anjum ◽  
S. L. Ajit Prasad ◽  
B. Suresha

The mechanical properties and dry sliding wear behaviour of glass fabric reinforced epoxy (G-E) composite with varying weight percentage of silicon dioxide (SiO2) filler have been studied in the present work. The influence of sliding distance, velocity, and applied normal load on dry sliding wear behaviour has been considered using Taguchi's L9orthogonal array. Addition of SiO2increased the density, hardness, flexural, and impact strengths of G-E composite. Results of dry sliding wear tests showed increasing wear volume with increase in sliding distance, load, and sliding velocity for G-E and SiO2filled G-E composites. Taguchi's results indicate that the sliding distance played a significant role followed by applied load, sliding velocity, and SiO2loading. Scanning electron micrographs of the worn surfaces of composite samples at different test parameters show smooth surface, microploughing, and fine grooves under low load and velocity. However, severe damage of matrix with debonding and fiber breakage was seen at high load and velocity especially in unfilled G-E composite.


2004 ◽  
Vol 25 (2) ◽  
pp. 163-166 ◽  
Author(s):  
Feng Wang ◽  
Huimin Liu ◽  
Yajun Ma ◽  
Yuansheng Jin

2014 ◽  
Vol 10 (2) ◽  
pp. 276-287
Author(s):  
Rajesh Siriyala ◽  
A. Gopala Krishna ◽  
P. Rama Murthy Raju ◽  
M. Duraiselvam

Purpose – Since, wear is the one of the most commonly encountered industrial problems leading to frequent replacement of components there is a need to develop metal matrix composites (MMCs) for achieving better wear properties. The purpose of this paper is to fabricate aluminum MMCs to improve the dry sliding wear characteristics. An effective multi-response optimization approach called the principal component analysis (PCA) was used to identify the sets of optimal parameters in dry sliding wear process. Design/methodology/approach – The present work investigates the dry sliding wear behavior of graphite reinforced aluminum composites produced by the molten metal mixing method by means of a pin-on-disc type wear set up. Dry sliding wear tests were carried on graphite reinforced MMCs and its matrix alloy sliding against a steel counter face. Different contact stress, reinforcement percentage, sliding distance and sliding velocity were selected as the control variables and the response selected was wear volume loss (WVL) and coefficient of friction (COF) to evaluate the dry sliding performance. An L25 orthogonal array was employed for the experimental design. Optimization of dry sliding performance of the graphite reinforced MMCs was performed using PCA. Findings – Based on the PCA, the optimum level parameters for overall principal component (PC) of WVL and COF have been identified. Moreover, analysis of variance was performed to know the impact of individual factors on overall PC of WVL and COF. The results indicated that the reinforcement percentage was found to be most effective factor among the other control parameters on dry sliding wear followed by sliding distance, sliding velocity and contact stress. Finally the wear surface morphology of the composites has been investigated using scanning electron microscopy. Practical implications – Various manufacturing techniques are available for processing of MMCs. Each technique has its own advantages and disadvantages. In particular, some techniques are significantly expensive compared to others. Generally the manufacturer prefers the low cost technique. Therefore stir casting technique which was used in this paper for manufacturing of Aluminum MMCs is the best alternative for processing of MMCs in the present commercial sectors. Since the most important criteria of a dry sliding wear behavior is to provide lower WVL and COF, this study has intended to prove the application of PCA technique for solving multi objective optimization problem in wear applications like piston rings, piston rods, cylinder heads and brake rotors, etc. Originality/value – Application of multi-response optimization technique for evaluation of tribological characteristics for Aluminum MMCs made up of graphite particulates is a first-of-its-kind approach in literature. Hence PCA method can be successfully used for multi-response optimization of dry sliding wear process.


2015 ◽  
Vol 642 ◽  
pp. 55-59 ◽  
Author(s):  
Shueiwan Henry Juang ◽  
Liang Jing Fan ◽  
Hsu Shuo Chang

In this study, the multi-pass friction stir processing (MP-FSP) technique was performed on ADC6 aluminum alloy + 5 wt% fly ash composite (A5FC) castings to increase their surface area. The dry sliding wear behaviors of the ADC6 alloy, A5FCs, and MP-FSPed A5FCs were evaluated. Dry sliding wear tests were performed using a ring-on-washer machine at a constant rotation speed of 100 rpm for 60 min, and the normal load was 10, 20, 30, and 40 N. The results showed that the MP-FSPed A5FCs had the lowest wear rates in the load range from 10 to 40 N, and adhesive wear was the major wear mechanism in these tests. The increased wear resistance was mainly due to grain refinement and elimination of casting defects after subjecting the ash composite to MP-FSP. The microstructure of the MP-FSPed A5FCs reveals that the sizes of the added raw fly ash particles decreased from micro-to nanoscale levels, and the nanoscale fly ash was uniformly dispersed in the aluminum matrix.


2011 ◽  
Vol 415-417 ◽  
pp. 170-173
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Yi Chao Ding ◽  
Yi San Wang

A wear resistant TiC-Cr7C3/Fe surface composite was produced by cast technique and in-situ synthesis technique. The microstructure and dry-sliding wear behavior of the surface composite was investigated using scanning electron microscope(SEM), X-ray diffraction(XRD) and MM-200 wear test machine. The results show that the surface composite consists of TiC and Cr7C3as the reinforcing phase, α-Fe and γ-Fe as the matrix. The surface composite has excellent wear-resistance under dry-sliding wear test condition with heavy loads.


Sign in / Sign up

Export Citation Format

Share Document