scholarly journals EVALUATION OF THE GLYCOGENOLYTIC EFFECT OF α-AMYLASE USING RADIOAUTOGRAPHY AND ELECTRON MICROSCOPY

1966 ◽  
Vol 14 (12) ◽  
pp. 898-906 ◽  
Author(s):  
A. COIMBRA

The effectiveness of crystalline α-amylase and saliva in hydrolyzing newly formed glycogen in liver and muscle was examined. Glycogen synthesis was induced by the administration of H3-glucose to fasting rats or by the incubation of tissue slices in a medium containing H3-glucose. Paraffin sections of Rossman-fixed tissues or small pieces of liver fixed in glutaraldehyde and subsequently postosmicated and embedded in Epon were then enzymatically digested. Grain counts were made in radioautographs of treated and untreated materials, and the amount of radioactivity removed by the digestion was used to assess the efficiency of the enzymes in hydrolyzing glycogen. Crystalline α-amylase hydrolyzed almost completely newly formed glycogen in liver and muscle. Saliva removed the glycogen that was synthesized in vivo, but it was less effective in hydrolyzing glycogen synthesized in vitro. Electron micrographs of digested liver cells confirmed the radioautographic findings on the effectiveness of the enzyme preparations.

Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 825
Author(s):  
Saman Sargazi ◽  
Mohammad Reza Hajinezhad ◽  
Abbas Rahdar ◽  
Muhammad Nadeem Zafar ◽  
Aneesa Awan ◽  
...  

In this research, tin ferrite (SnFe2O4) NPs were synthesized via hydrothermal route using ferric chloride and tin chloride as precursors and were then characterized in terms of morphology and structure using Fourier-transform infrared spectroscopy (FTIR), Ultraviolet–visible spectroscopy (UV-Vis), X-ray power diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) method. The obtained UV-Vis spectra was used to measure band gap energy of as-prepared SnFe2O4 NPs. XRD confirmed the spinel structure of NPs, while SEM and TEM analyses disclosed the size of NPs in the range of 15–50 nm and revealed the spherical shape of NPs. Moreover, energy dispersive X-ray spectroscopy (EDS) and BET analysis was carried out to estimate elemental composition and specific surface area, respectively. In vitro cytotoxicity of the synthesized NPs were studied on normal (HUVEC, HEK293) and cancerous (A549) human cell lines. HUVEC cells were resistant to SnFe2O4 NPs; while a significant decrease in the viability of HEK293 cells was observed when treated with higher concentrations of SnFe2O4 NPs. Furthermore, SnFe2O4 NPs induced dramatic cytotoxicity against A549 cells. For in vivo study, rats received SnFe2O4 NPs at dosages of 0, 0.1, 1, and 10 mg/kg. The 10 mg/kg dose increased serum blood urea nitrogen and creatinine compared to the controls (P < 0.05). The pathology showed necrosis in the liver, heart, and lungs, and the greatest damages were related to the kidneys. Overall, the in vivo and in vitro experiments showed that SnFe2O4 NPs at high doses had toxic effects on lung, liver and kidney cells without inducing toxicity to HUVECs. Further studies are warranted to fully elucidate the side effects of SnFe2O4 NPs for their application in theranostics.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1131
Author(s):  
Maricela Santana ◽  
Gonzalo Montoya ◽  
Raúl Herrera ◽  
Lía Hoz ◽  
Enrique Romo ◽  
...  

Dental cementum contains unique molecules that regulate the mineralization process in vitro and in vivo, such as cementum protein 1 (CEMP1). This protein possesses amino acid sequence motifs like the human recombinant CEMP1 with biological activity. This novel cementum protein 1-derived peptide (CEMP1-p3, from the CEMP1’s N-terminal domain: (QPLPKGCAAVKAEVGIPAPH), consists of 20 amino acids. Hydroxyapatite (HA) crystals could be obtained through the combination of the amorphous precursor phase and macromolecules such as proteins and peptides. We used a simple method to synthesize peptide/hydroxyapatite nanocomposites using OCP and CEMP1-p3. The characterization of the crystals through scanning electron microscopy (SEM), powder X-ray diffraction (XRD), high--resolution transmission electron microscopy (HRTEM), and Raman spectroscopy revealed that CEMP1-p3 transformed OCP into hydroxyapatite (HA) under constant ionic strength and in a buffered solution. CEMP1-p3 binds and highly adsorbs to OCP and is a potent growth stimulator of OCP crystals. CEMP1-p3 fosters the transformation of OCP into HA crystals with crystalline planes (300) and (004) that correspond to the cell of hexagonal HA. Octacalcium phosphate crystals treated with CEMP1-p3 grown in simulated physiological buffer acquired hexagonal arrangement corresponding to HA. These findings provide new insights into the potential application of CEMP1-p3 on possible biomimetic approaches to generate materials for the repair and regeneration of mineralized tissues, or restorative materials in the orthopedic field.


2005 ◽  
Vol 114 (4) ◽  
pp. 279-288 ◽  
Author(s):  
Satish Govindaraj ◽  
Elena Fedorova ◽  
Eric M. Genden ◽  
Houtan Chaboki ◽  
Jonathan S. Bromberg ◽  
...  

Prior work has demonstrated that immunosuppressed orthotopic tracheal allografts undergo progressive reepithelialization over a 48-day period with recipient-derived tracheal epithelium. We hypothesized that reepithelialization of tracheal allografts would prevent rejection after withdrawal of immunosuppression. BALB/c murine tracheal grafts were transplanted orthotopically into either syngeneic or allogeneic C57/BL6 recipients. The recipients were either not immunosuppressed, immunosuppressed with cyclosporine A (10 mg/kg per day) continuously, or immunosuppressed for 48 days and then withdrawn from immunosuppression. The grafts were assessed for acute and chronic rejection 10 days and 50 days after immunosuppression withdrawal. The immunosuppressed allograft recipients maintained a ciliated epithelium acutely and chronically after immunosuppression withdrawal. Ten days after immunosuppression withdrawal, there was a mild cellular infiltrate, which resolved 50 days after withdrawal. Electron microscopy, lymphocyte subpopulation assays, and lamina propria analysis demonstrated that immunosuppression withdrawal did not result in tracheal allograft rejection. In vitro and in vivo assessments did not demonstrate evidence of systemic or local immune tolerance. We conclude that reepithelialization of orthotopic tracheal allografts with recipient-derived mucosa prevents rejection of allograft segments. Tracheal transplantation may require only transient immunosuppression, which can be withdrawn after tracheal reepithelialization.


1986 ◽  
Vol 6 (7) ◽  
pp. 2663-2673 ◽  
Author(s):  
M C Strobel ◽  
J Abelson

The Saccharomyces cerevisiae leucine-inserting amber suppressor tRNA gene SUP53 (a tRNALeu3 allele) was used to investigate the relationship between precursor tRNA structure and mature tRNA function. This gene encodes a pre-tRNA which contains a 32-base intron. The mature tRNASUP53 contains a 5-methylcytosine modification of the anticodon wobble base. Mutations were made in the SUP53 intron. These mutant genes were transcribed in an S. cerevisiae nuclear extract preparation. In this extract, primary tRNA gene transcripts are end-processed and base modified after addition of cofactors. The base modifications made in vitro were examined, and the mutant pre-tRNAs were analyzed for their ability to serve as substrates for partially purified S. cerevisiae tRNA endonuclease and ligase. Finally, the suppressor function of these mutant tRNA genes was assayed after their integration into the S. cerevisiae genome. Mutant analysis showed that the totally intact precursor tRNA, rather than any specific sequence or structure of the intron, was necessary for efficient nonsense suppression by tRNASUP53. Less efficient suppressor activity correlated with the absence of the 5-methylcytosine modification. Most of the intron-altered precursor tRNAs were successfully spliced in vitro, indicating that modifications are not critical for recognition by the tRNA endonuclease and ligase.


Author(s):  
Xiaoming He ◽  
Shawn Mcgee ◽  
James E. Coad ◽  
Paul A. Iaizzo ◽  
David J. Swanlund ◽  
...  

In this paper, we report on the characterization of microwave therapy of normal porcine kidneys both in vitro and in vivo. This technology is being developed for eventual use in the treatment of small renal cell carcinoma (RCC) by minimally invasive procedures. During experiments, microwave energy was applied through an interstitial microwave probe (Urologix, Plymouth, MN) to the kidney cortex with occasional involvement of the kidney medulla. The thermal histories at several locations were recorded. After treatment, the kidneys were bisected and small tissue slices were cut out at approximately the same depth as the thermal probes. The tissue slices were further processed for histological study. Both cellular injury and the area of microvascular stasis were quantitatively evaluated by histology. Absolute rate kinetic models of cellular injury and vascular stasis were developed and fit to this data. A 3-D finite element thermal model based on the Pennes Bioheat equation was developed and solved using a commercial software package (ANSYS, V5.7). The Specific Absorption Rate (SAR) of the microwave probe was measured experimentally in tissue equivalent gel-like solution. The thermal model was first validated by the measured in vitro thermal histories. It was then used to determine the blood perfusion term in vivo.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 555
Author(s):  
Marilena Vlachou ◽  
Vangelis Karalis

The aim of this study was to develop a new in vitro–in vivo simulation (IVIVS) approach in order to predict the outcome of a bioequivalence study. The predictability of the IVIVS procedure was evaluated through its application in the development process of a new generic product of amlodipine/irbesartan/hydrochlorothiazide. The developed IVIVS methodology is composed of three parts: (a) mathematical description of in vitro dissolution profiles, (b) mathematical description of in vivo kinetics, and (c) development of joint in vitro–in vivo simulations. The entire programming was done in MATLAB® and all created scripts were validated through other software. The IVIVS approach can be implemented for any number of subjects, clinical design, variability and can be repeated for thousands of times using Monte Carlo techniques. The probability of success of each scenario is recorded and finally, an overall assessment is made in order to select the most suitable batch. Alternatively, if the IVIVS shows reduced probability of BE success, the R&D department is advised to reformulate the product. In this study, the IVIVS approach predicted successfully the BE outcome of the three drugs. During the development of generics, the IVIVS approach can save time and expenses.


1985 ◽  
Vol 5 (5) ◽  
pp. 1093-1099
Author(s):  
R J Schmidt ◽  
N W Gillham ◽  
J E Boynton

In pulse-chase experiments in which log-phase cells of Chlamydomonas reinhardtii were labeled in vivo for 5 min with H2(35)SO4, fluorographs of immunoprecipitates from whole cell extracts revealed that chloroplast ribosomal proteins L-2, L-6, L-21, and L-29, which are made in the cytosol and imported, appeared in their mature forms. However, in the case of chloroplast ribosomal protein L-18, which is also made in the cytoplasm and imported, a prominent precursor with an apparent molecular weight of 17,000 was found at the end of a 5-min pulse. This precursor was processed to its mature size (apparent molecular weight of 15,500) within the first 5 min of the subsequent chase. As determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the precursor to L-18 formed in vivo was 1.5 kilodaltons smaller than the primary product detected in translations of Chlamydomonas polyadenylated RNA in vitro. Upon a 10-min incubation with a postribosomal supernatant from Chlamydomonas, the 18,500-dalton precursor detected in vitro could be partially converted into a polypeptide that comigrated with the 17,000-dalton precursor detected in extracts of cells labeled in vivo. Under conditions in which the total amounts of chloroplast proteins had been reduced and cells were made to synthesize ribosomes rapidly, the apparent half-life of the 17,000-dalton precursor was extended over that seen in log-phase cells. When chloroplast protein synthesis was inhibited with lincomycin for 3 h before labeling under these conditions, the 17,000-dalton L-18 precursor but not the mature form was found, and the precursor was slowly degraded during a 60-min chase. When cells were placed in the dark for 3 h before labeling, processing of this precursor to the mature form appeared unaffected, but the chloroplast-synthesized ribosomal protein L-26 was detected, indicating that chloroplast protein synthesis was still occurring. We interpret these results to indicate that the maturation of protein L-18 in vivo involves at least two processing steps, one of which depends on a protein made on chloroplast ribosomes.


1997 ◽  
Vol 272 (3) ◽  
pp. L479-L485 ◽  
Author(s):  
M. Ikegami ◽  
T. R. Korfhagen ◽  
M. D. Bruno ◽  
J. A. Whitsett ◽  
A. H. Jobe

In the present study we asked if surfactant metabolism was altered in surfactant protein (SP) A-deficient mice in vivo. Although previous studies in vitro demonstrated that SP-A modulates surfactant secretion and reuptake by type II cells, mice made SP-A deficient by homologous recombination grow and reproduce normally and have normal lung function. Alveolar and lung tissue saturated phophatidylcholine (Sat PC) pools were 50 and 26% larger, respectively, in SP-A(-/-) mice than in SP-A(+/+) mice. Radiolabeled choline and palmitate incorporation into lung Sat PC was similar both in vivo and for lung tissue slices in vitro from SP-A(+/+) and SP-A(-/-) mice. Percent secretion of radiolabeled Sat PC was unchanged from 3 to 15 h, although SP-A(-/-) mice retained more labeled Sat PC in the alveolar lavages at 48 h (consistent with the increased surfactant pool sizes). Clearance of radiolabeled dipalmitoylphosphatidylcholine and SP-B from the air spaces after intratracheal injection was similar in SP-A(-/-) and SP-A(+/+) mice. Lack of SP-A had minimal effects on the overall metabolism of Sat PC or SP-B in mice.


Sign in / Sign up

Export Citation Format

Share Document