Lateral ventilation performance for removal of pulsating buoyant jet under the influence of high-temperature plume

2019 ◽  
Vol 29 (4) ◽  
pp. 543-557 ◽  
Author(s):  
Yi Wang ◽  
Lei Cao ◽  
Yanqiu Huang ◽  
Yingxue Cao

Lateral exhaust systems have commonly been applied to capture polluted buoyant jets in many industrial processes, such as casting and metallurgy. Compared with the normal conditions of design manuals, the capture efficiency of a lateral exhaust hood (LEH) is often weakened by two factors in actual processes: the unsteady buoyant jet released from the operating surface, and the plume formed above a high-temperature workpiece placed between the LEH and the operating surface. In this study, through experiments and numerical simulations, a pulsatile phenomenon was found in the velocity and concentration distribution of the unsteady buoyant jet. Results show that the contaminate escape ratio is pulsatile; it rises with the instantaneous increase in the buoyant jet velocity and gradually decreases to a constant value. This study not only reveals the air distribution of pulsating buoyant jet but also analyses the effect of the pulsating buoyant jet and high-temperature plume on lateral ventilation system capture efficiency and provides a possible guidance for future design of new building ventilation technologies.

2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Yi Wang ◽  
Yanqiu Huang ◽  
Jiaping Liu ◽  
Hai Wang ◽  
Qiuhan Liu

The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to −5 Pa.


Author(s):  
M A Azim

Two types of isothermal free jets, named positively and negatively buoyant, have been studied numerically to discern the effect of surrounding temperatures on their flow dynamics. Turbulence closure in those jets was achieved by standard k - ε model. The governing equations were solved using Implicit θ-Scheme and Tridiagonal Matrix Algorithm. Calculations were made for the jets having constant temperature at 20 °C and by varying surrounding temperatures from 20°C to 1000°C. It is clear that negatively buoyant jets but not the positively buoyant jets are nearly invariant to the change in surrounding temperatures compared to non-buoyant jet. Change in fluid dynamical behaviour of positively buoyant jets due to surrounding temperature change seems promising as it may offer the advantages of fuel jets in high-temperature air combustion.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2314
Author(s):  
Jau-Woei Perng ◽  
Yi-Chang Kuo ◽  
Yao-Tsung Chang ◽  
Hsi-Hsiang Chang

This study discusses a numerical study that was developed to optimize the ventilation system in a power substation prior to its installation. We established a multiobjective particle swarm optimizer to identify the best approach for simultaneously improving, first, the ventilation performance considering the most appropriate inlet size and outlet openings and second, the reduction of the synthetic noise of the ventilation and power consumption from the exhaust fan equipment and its operation. The study used building information modeling to construct indoor and outdoor models of the substation building and verified the overall performance using ANSYS FLUENT 18.0 software to simulate the air velocity and air temperature distribution within the building. Results show that the exhaust fan of the B1F cable finishing room and the 23 kV gas insulated switchgear (GIS) room optimize the reduction of horsepower by approximately 1 Hp and 0.5 Hp. The combined noise is reduced by 4 dBA and 2 dBA; the exhaust fan runs for 30 min, and the two equipment rooms can cool down by 2.9 °C and 1.7 °C, respectively. Therefore, it is confirmed that the MOPSO algorithm provides a more energy-efficient and environmentally friendly building ventilation environment.


2020 ◽  
Vol 177 ◽  
pp. 106849 ◽  
Author(s):  
Yanqiu Huang ◽  
Ke Lu ◽  
Junwei Guo ◽  
Yi Wang ◽  
Chunxiao Zhao ◽  
...  

2020 ◽  
Vol 38 (9A) ◽  
pp. 1257-1275
Author(s):  
Wisam M. Mareed ◽  
Hasanen M. Hussen

 Elevated CO2 rates in a building affect the health of the occupant. This paper deals with an experimental and numerical analysis conducted in a full-scale test room located in the Department of Mechanical Engineering at the University of Technology. The experiments and CFD were conducted for analyzing ventilation performance. It is a study on the effect of the discharge airflow rate of the ceiling type air-conditioner on ventilation performance in the lecture room with the mixing ventilation. Most obtained findings show that database and questionnaires analyzed prefer heights between 0.2 m to 1.2 m in the middle of an occupied zone and breathing zone height of between 0.75 m to 1.8 given in the literature surveyed. It is noticed the mismatch of internal conditions with thermal comfort, and indoor air quality recommended by [ASHRAE Standard 62, ANSI / ASHRAE Standard 55-2010]. CFD simulations have been carried to provide insights on the indoor air quality and comfort conditions throughout the classroom. Particle concentrations, thermal conditions, and modified ventilation system solutions are reported.


2012 ◽  
Vol 708 ◽  
pp. 539-575 ◽  
Author(s):  
Adrian C. H. Lai ◽  
Joseph H. W. Lee

AbstractAn array of closely spaced round buoyant jets interact dynamically due to the pressure field induced by jet entrainment. Mutual jet attraction can result in a significant change in jet trajectories. Jet merging also leads to overlapping of the passive scalar fields associated with the individual jets, resulting in mixing characteristics that are drastically different from those of an independent free jet. A general semi-analytical model for the dynamic interaction of multiple buoyant jets in stagnant ambient conditions is proposed. The external irrotational flow field induced by the buoyant jets is computed by a distribution of point sinks with strength equal to the entrainment per unit length along the unknown jet trajectories and accounting for boundary effects. The buoyant jet trajectories are then determined by an iterative solution of an integral buoyant jet model by tracking the changes in the external entrainment flow and dynamic pressure fields. The velocity and concentration fields of the jet group are obtained by momentum or kinetic energy superposition for merged jets and plumes, respectively. The modelling approach is supported by numerical solution of the Reynolds-averaged Navier–Stokes equations. The model shows that jet merging and mixing can be significantly affected by jet interactions. Model predictions of the multiple jet trajectories, merging height, as well as the centreline velocity and concentration of the buoyant jet group are in good agreement with experimental data for: (i) a clustered momentum jet group; (ii) a turbulent plume pair; and (iii) a rosette buoyant jet group. Dynamic interactions between a jet group are shown to decrease with the addition of an ambient cross-flow.


Author(s):  
Eny Nor Syahira Mohamad Hashim ◽  
◽  
Norhafizah Salleh ◽  
Noor Azlina Abdul Hamid ◽  
◽  
...  

This paper proposes a cooling house system that can promote thermal comfort in buildings without air-conditioning. The cooling panel wall forms a part of an Integrated Building System (IBS), and is essentially made of tubes filled with either water or glycerin as the coolant. Target strength for the panel wall was designed based on the Malaysian Standard (MS) while the building ventilation system followed the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) standard. The results are reported based on indoor and outdoor temperature difference together with relative humidity to identify the best performing house model and also coolant. The outcome of this research is expected to add value to design concepts with a better promotion of air flow and circulation in the building, without over-usage of natural resources and higher building cost to achieve the same objective.


2018 ◽  
Vol 4 (7) ◽  
pp. 1521 ◽  
Author(s):  
Fang Lin

Construction ventilation system is divided into two stages based on completion status of shafts in the underground petroleum storage project in Jinzhou, China. With the help of theoretical analysis and numerical simulations by using FLUENT software, in the first stage, reasonable construction ventilation is designed and cases with different outside temperature are discussed to investigate the effect of ventilation performance. It is found that with temperature difference increases, peak value of CO concentration, exhausting time of dirty air and required time to meet the CO concentration qualification decrease, but the influence degree is quite limited. Gallery-type network ventilation technique (GNVT) refined from theories of operation ventilation for road tunnel and mining ventilation network, is proposed to conduct the second stage construction ventilation. Ventilation performance of different ventilation schemes with various shafts’ states and diverse arrangements of fans are also analyzed in this study. It turns out that Axial-GNVT with shafts taking in fresh air and access tunnel ejecting dirty air has much better performance than traditional forced ventilation from access tunnel. Improved energy saving scheme is finally adopted to guide the construction. In addition, it is worth mentioning that there is no need to build middle ventilation shafts and construct shafts as large and long as possible. Field test of wind speed, dust, poisonous gas, atmospheric pressure, temperature are performed to detect ventilation effectiveness. Reduction coefficient =0.69is obtained from the test results in consideration of super-large section and it also indicates that there is no difference if the axial fan is at the shaft mouth or in the bottom.


Sign in / Sign up

Export Citation Format

Share Document