Implementing an emissions-rate model in computational fluid dynamics simulations of contaminant diffusion processes: A case study with xylene in painting workshops

2020 ◽  
pp. 1420326X2092313
Author(s):  
Aihua Liu ◽  
Xiaofei Huang ◽  
Zhi Yuan ◽  
Jing Wan ◽  
Yijie Zhuang

Organic solvents frequently lead to substantial occupational health issues in secondary industries. This study examined the xylene diffusion process in painting workshops as a case study to develop a control of indoor air quality in manufacturing workshops. Three-dimensional simulations of xylene emission were built based on a ventilated chamber test to provide the source term for the mathematical model. An exponential relationship was established between xylene emissions rates and time. Numerical results obtained using the emissions rate model were more consistent with experimental data than those from constant emission rate. Owing to the property that is denser than air; therefore, given the coupled influence of molecular diffusion, gravity and environmental turbulence, the xylene concentration at a height of 0.75–2.5 m is high, and it could possibly exceed the Chinese standard, GBZ 2.1–2019 permissible concentration time weighted average (PC-TWA) of 50 mg/m3 in human-occupied zones. At the height of the human breathing zone (1.1 m), the aggregated concentration may even exceed the PC-TWA at 450 s by 100 times. Considering that the diffusion of xylene in a painting workshop represents heavy-gas pollutant diffusion problems, this study can be extended to predict pollutant concentration distributions in other secondary industrial workshops.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shota Ono

AbstractSome of the three-dimensional (3D) crystal structures are constructed by stacking two-dimensional (2D) layers. To study whether this geometric concept, i.e., using 2D layers as building blocks for 3D structures, can be applied to computational materials design, we theoretically investigate the dynamical stability of copper-based compounds CuX (a metallic element X) in the B$$_h$$ h and L1$$_1$$ 1 structures constructed from the buckled honeycomb (BHC) structure and in the B2 and L1$$_0$$ 0 structures constructed from the buckled square (BSQ) structure. We demonstrate that (i) if CuX in the BHC structure is dynamically stable, those in the B$$_h$$ h and L1$$_1$$ 1 structures are also stable. Using molecular dynamics simulations, we particularly show that CuAu in the B$$_h$$ h and L1$$_1$$ 1 structures withstand temperatures as high as 1000 K. Although the interrelationship of the metastability between the BSQ and the 3D structures (B2 and L1$$_0$$ 0 ) is not clear, we find that (ii) if CuX in the B2 (L1$$_0$$ 0 ) structure is dynamically stable, that in the L1$$_0$$ 0 (B2) is unstable. This is rationalized by the tetragonal Bain path calculations.


Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Luciano Kagami ◽  
Joel Roca-Martínez ◽  
Jose Gavaldá-García ◽  
Pathmanaban Ramasamy ◽  
K. Anton Feenstra ◽  
...  

Abstract Background The SARS-CoV-2 virus, the causative agent of COVID-19, consists of an assembly of proteins that determine its infectious and immunological behavior, as well as its response to therapeutics. Major structural biology efforts on these proteins have already provided essential insights into the mode of action of the virus, as well as avenues for structure-based drug design. However, not all of the SARS-CoV-2 proteins, or regions thereof, have a well-defined three-dimensional structure, and as such might exhibit ambiguous, dynamic behaviour that is not evident from static structure representations, nor from molecular dynamics simulations using these structures. Main We present a website (https://bio2byte.be/sars2/) that provides protein sequence-based predictions of the backbone and side-chain dynamics and conformational propensities of these proteins, as well as derived early folding, disorder, β-sheet aggregation, protein-protein interaction and epitope propensities. These predictions attempt to capture the inherent biophysical propensities encoded in the sequence, rather than context-dependent behaviour such as the final folded state. In addition, we provide the biophysical variation that is observed in homologous proteins, which gives an indication of the limits of their functionally relevant biophysical behaviour. Conclusion The https://bio2byte.be/sars2/ website provides a range of protein sequence-based predictions for 27 SARS-CoV-2 proteins, enabling researchers to form hypotheses about their possible functional modes of action.


Author(s):  
Leonardo Baglioni ◽  
Federico Fallavollita

AbstractThe present essay investigates the potential of generative representation applied to the study of relief perspective architectures realized in Italy between the sixteenth and seventeenth centuries. In arts, and architecture in particular, relief perspective is a three-dimensional structure able to create the illusion of great depths in small spaces. A method of investigation applied to the case study of the Avila Chapel in Santa Maria in Trastevere in Rome (Antonio Gherardi 1678) is proposed. The research methodology can be extended to other cases and is based on the use of a Relief Perspective Camera, which can create both a linear perspective and a relief perspective. Experimenting mechanically and automatically the perspective transformations from the affine space to the illusory space and vice versa has allowed us to see the case study in a different light.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 965
Author(s):  
Xingyue Zhu ◽  
Kaixiong Yu ◽  
Xiaofan Zhu ◽  
Juan Su ◽  
Chi Wu

Nowadays, it is still a challenge for commercial nitrate sensors to meet the requirement of high accuracy in a complex water. Based on deep-ultraviolet spectral analysis and a regression algorithm, a different measuring method for obtaining the concentration of nitrate in seawater is proposed in this paper. The system consists of a deuterium lamp, an optical fiber splitter module, a reflection probe, temperature and salinity sensors, and a deep-ultraviolet spectrometer. The regression model based on weighted average kernel partial least squares (WA-KPLS) algorithm together with corrections for temperature and salinity (TSC) is established. After that, the seawater samples from Western Pacific and Aoshan Bay in Qingdao, China with the addition of various nitrate concentrations are studied to verify the reliability and accuracy of the method. The results show that the TSC-WA-KPLS algorithm shows the best results when compared against the multiple linear regression (MLR) and ISUS (in situ ultraviolet spectrophotometer) algorithms in the temperatures range of 4–25 °C, with RMSEP of 0.67 µmol/L for Aoshan Bay seawater and 1.08 µmol/L for Western Pacific seawater. The method proposed in this paper is suitable for measuring the nitrate concentration in seawater with higher accuracy, which could find application in the development of in-situ and real-time nitrate sensors.


2021 ◽  
Vol 1 (1) ◽  
pp. 39-47
Author(s):  
Christine Price

This paper problematises the dominance of global north perspectives in landscape architectural education, in South Africa where there are urgent calls to decolonise education and make visible indigenous and vernacular meaning-making practices. In grappling with these concerns, this research finds resonance with a multimodal social semiotic approach that acknowledges the interest, agency and resourcefulness of students as meaning-makers in both accessing and challenging dominant educational discourses. This research involves a case study of a design project in a first-year landscape architectural studio. The project requires students to choose a narrative and to represent it as a spatial model: a scaled, 3D maquette of a spatial experience that could be installed in a public park. This practitioner reflection closely analyses the spatial model of one student, Malibongwe, focusing on his interest in meaning-making; the innovative meaning-making practices and diverse resources he draws on; and his expression of spatial signifiers of the Black experiences portrayed in his narrative. This reflection shows how Malibongwe’s narrative is not only reproduced in the spatial model, it is remade: the transformation of resources into three-dimensional spatial form results in new understandings and the production of new meanings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexey A. Polilov ◽  
Anastasia A. Makarova ◽  
Song Pang ◽  
C. Shan Xu ◽  
Harald Hess

AbstractModern morphological and structural studies are coming to a new level by incorporating the latest methods of three-dimensional electron microscopy (3D-EM). One of the key problems for the wide usage of these methods is posed by difficulties with sample preparation, since the methods work poorly with heterogeneous (consisting of tissues different in structure and in chemical composition) samples and require expensive equipment and usually much time. We have developed a simple protocol allows preparing heterogeneous biological samples suitable for 3D-EM in a laboratory that has a standard supply of equipment and reagents for electron microscopy. This protocol, combined with focused ion-beam scanning electron microscopy, makes it possible to study 3D ultrastructure of complex biological samples, e.g., whole insect heads, over their entire volume at the cellular and subcellular levels. The protocol provides new opportunities for many areas of study, including connectomics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chaojian Chen ◽  
Manjesh Kumar Singh ◽  
Katrin Wunderlich ◽  
Sean Harvey ◽  
Colette J. Whitfield ◽  
...  

AbstractThe creation of synthetic polymer nanoobjects with well-defined hierarchical structures is important for a wide range of applications such as nanomaterial synthesis, catalysis, and therapeutics. Inspired by the programmability and precise three-dimensional architectures of biomolecules, here we demonstrate the strategy of fabricating controlled hierarchical structures through self-assembly of folded synthetic polymers. Linear poly(2-hydroxyethyl methacrylate) of different lengths are folded into cyclic polymers and their self-assembly into hierarchical structures is elucidated by various experimental techniques and molecular dynamics simulations. Based on their structural similarity, macrocyclic brush polymers with amphiphilic block side chains are synthesized, which can self-assemble into wormlike and higher-ordered structures. Our work points out the vital role of polymer folding in macromolecular self-assembly and establishes a versatile approach for constructing biomimetic hierarchical assemblies.


Sign in / Sign up

Export Citation Format

Share Document