Elderly fall risk prediction based on a physiological profile approach using artificial neural networks

2016 ◽  
Vol 24 (4) ◽  
pp. 410-418 ◽  
Author(s):  
Jafar Razmara ◽  
Mohammad Hassan Zaboli ◽  
Hadi Hassankhani

Falls play a critical role in older people’s life as it is an important source of morbidity and mortality in elders. In this article, elders fall risk is predicted based on a physiological profile approach using a multilayer neural network with back-propagation learning algorithm. The personal physiological profile of 200 elders was collected through a questionnaire and used as the experimental data for learning and testing the neural network. The profile contains a series of simple factors putting elders at risk for falls such as vision abilities, muscle forces, and some other daily activities and grouped into two sets: psychological factors and public factors. The experimental data were investigated to select factors with high impact using principal component analysis. The experimental results show an accuracy of ≈90 percent and ≈87.5 percent for fall prediction among the psychological and public factors, respectively. Furthermore, combining these two datasets yield an accuracy of ≈91 percent that is better than the accuracy of single datasets. The proposed method suggests a set of valid and reliable measurements that can be employed in a range of health care systems and physical therapy to distinguish people who are at risk for falls.

Author(s):  
T. Zh. Mazakov ◽  
D. N. Narynbekovna

Now a day’s security is a big issue, the whole world has been working on the face recognition techniques as face is used for the extraction of facial features. An analysis has been done of the commonly used face recognition techniques. This paper presents a system for the recognition of face for identification and verification purposes by using Principal Component Analysis (PCA) with Back Propagation Neural Networks (BPNN) and the implementation of face recognition system is done by using neural network. The use of neural network is to produce an output pattern from input pattern. This system for facial recognition is implemented in MATLAB using neural networks toolbox. Back propagation Neural Network is multi-layered network in which weights are fixed but adjustment of weights can be done on the basis of sigmoidal function. This algorithm is a learning algorithm to train input and output data set. It also calculates how the error changes when weights are increased or decreased. This paper consists of background and future perspective of face recognition techniques and how these techniques can be improved.


Author(s):  
Taranpreet Singh Ruprah

This paper is proposed the face recognition method using PCA with neural network back error propagation learning algorithm .In this paper a feature is extracted using principal component analysis and then classification by creation of back propagation neural network. We run our algorithm for face recognition application using principal component analysis, neural network and also calculate its performance by using the photometric normalization technique: Histogram Equalization and comparing with Euclidean Distance, and Normalized correlation classifiers. The system produces promising results for face verification and face recognition. Demonstrate the recognition accuracy for given number of input pattern.


2012 ◽  
Vol 6-7 ◽  
pp. 1055-1060 ◽  
Author(s):  
Yang Bing ◽  
Jian Kun Hao ◽  
Si Chang Zhang

In this study we apply back propagation Neural Network models to predict the daily Shanghai Stock Exchange Composite Index. The learning algorithm and gradient search technique are constructed in the models. We evaluate the prediction models and conclude that the Shanghai Stock Exchange Composite Index is predictable in the short term. Empirical study shows that the Neural Network models is successfully applied to predict the daily highest, lowest, and closing value of the Shanghai Stock Exchange Composite Index, but it can not predict the return rate of the Shanghai Stock Exchange Composite Index in short terms.


2017 ◽  
Vol 14 (9) ◽  
pp. 095601 ◽  
Author(s):  
Huimin Sun ◽  
Yaoyong Meng ◽  
Pingli Zhang ◽  
Yajing Li ◽  
Nan Li ◽  
...  

2017 ◽  
Vol 60 (4) ◽  
pp. 1037-1044
Author(s):  
Zhenbo Wei ◽  
Yu Zhao ◽  
Jun Wang

Abstract. In this study, a potentiometric E-tongue was employed for comprehensive evaluation of water quality and goldfish population with the help of pattern recognition methods. Four water quality parameters, i.e., pH and concentrations of dissolved oxygen (DO), nitrite (NO2-N), and ammonium (NH3-N), were tested by conventional analysis methods. The differences in water quality parameters between samples were revealed by two-way analysis of variance (ANOVA). The cultivation days and goldfish population were classified well by principal component analysis (PCA) and canonical discriminant analysis (CDA), and the distribution of each sample was clearer in CDA score plots than in PCA score plots. The cultivation days, goldfish population, and water parameters were predicted by a T-S fuzzy neural network (TSFNN) and back-propagation artificial neural network (BPANN). BPANN performed better than TSFNN in the prediction, and all fitting correlation coefficients were >0.90. The results indicated that the potentiometric E-tongue coupled with pattern recognition methods could be applied as a rapid method for the determination and evaluation of water quality and goldfish population. Keywords: Classify, E-tongue, Goldfish water, Prediction.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 593 ◽  
Author(s):  
Qiangjian Gao ◽  
Yingyi Zhang ◽  
Xin Jiang ◽  
Haiyan Zheng ◽  
Fengman Shen

The Ambient Compressive Strength (CS) of pellets, influenced by several factors, is regarded as a criterion to assess pellets during metallurgical processes. A prediction model based on Artificial Neural Network (ANN) was proposed in order to provide a reliable and economic control strategy for CS in pellet production and to forecast and control pellet CS. The dimensionality of 19 influence factors of CS was considered and reduced by Principal Component Analysis (PCA). The PCA variables were then used as the input variables for the Back Propagation (BP) neural network, which was upgraded by Genetic Algorithm (GA), with CS as the output variable. After training and testing with production data, the PCA-GA-BP neural network was established. Additionally, the sensitivity analysis of input variables was calculated to obtain a detailed influence on pellet CS. It has been found that prediction accuracy of the PCA-GA-BP network mentioned here is 96.4%, indicating that the ANN network is effective to predict CS in the pelletizing process.


Author(s):  
Rasheed Adekunle Adebayo ◽  
Mehluli Moyo ◽  
Evariste Bosco Gueguim-Kana ◽  
Ignatius Verla Nsahlai

Artificial Neural Network (ANN) and Random Forest models for predicting rumen fill of cattle and sheep were developed. Data on rumen fill were collected from studies that reported body weights, measured rumen fill and stated diets fed to animals. Animal and feed factors that affected rumen fill were identified from each study and used to create a dataset. These factors were used as input variables for predicting the weight of rumen fill. For ANN modelling, a three-layer Levenberg-Marquardt Back Propagation Neural Network was adopted and achieved 96% accuracy in prediction of the weight of rumen fill. The precision of the ANN model’s prediction of rumen fill was higher for cattle (80%) than sheep (56%). On validation, the ANN model achieved 95% accuracy in prediction of the weight of rumen fill. A Random Forest model was trained using a binary tree-based machine-learning algorithm and achieved 87% accuracy in prediction of rumen fill. The Random Forest model achieved 16% (cattle) and 57% (sheep) accuracy in validation of the prediction of rumen fill. In conclusion, the ANN model gave better predictions of rumen fill compared to the Random Forest model and should be used in predicting rumen fill of cattle and sheep.


Author(s):  
Rajesh Kumar Porwal ◽  
Vinod Yadava ◽  
J. Ramkumar

Determination of material removal rate (MRR), tool wear rate (TWR) and hole taper (Ta) is a challenging task for manufacturing engineers from the productivity and accuracy point of view of the symmetrical and nonsymmetrical holes due to hole sinking electro discharge micro machining (HS-EDMM) process. Thus, mathematical models for quick prediction of these aspects are needed because experimental determinations of process performances are always tedious and time consuming. Not only prediction but determination of optimum parameter for optimization of process performance is also required. This paper attempts to apply a hybrid mathematical approach comprising of Back Propagation Neural Network (BPNN) for prediction and Grey Relational Analysis (GRA) coupled with Principal Component Analysis (PCA) for optimization with multiple responses of HS-EDMM of Invar-36. Experiments were conducted to generate dataset for training and testing of the network where input parameters consist of gap voltage, capacitance of capacitor and the resulting performance parameters MRR, TWR and Ta. The results indicate that the hybrid approach is capable to predict process output and optimize process performance with reasonable accuracy under varied operating conditions of HS-EDMM. The proposed approach would be extendable to other configurations of EDMM processes for different material.


2020 ◽  
Vol 977 ◽  
pp. 163-168
Author(s):  
Mohanraj Murugesan ◽  
Dong Won Jung

Isothermal tensile test of medium carbon steel material was conducted on a computer controlled servo-hydraulic testing machine at the deformation temperatures (923 to 1223 K) and the strain rates (0.05 to 1.0 s-1). Using the experimental data, the artificial neural network (ANN) model with a back-propagation (BP) algorithm was proposed to predict the hot deformation behavior of medium carbon steel material. For the model training and testing purpose, deformation temperature, strain rate and strain data were considered as inputs and in addition, the flow stress data were used a targets. Before running the neural network, the test data were normalized to effectively run the problem and after solving the problem, the obtained results were again converted in order to achieve the actual data. According to the predicted results, the coefficient of determination (R2) and the average absolute relative error between the predicted flow stress and the experimental data were determined as 0.997 and 0.913%, respectively. In addition, by evaluating each test conditions, it was found that the average absolute relative error based on an ANN model varied from 0.55% to 1.36% and moreover, the results showed the better predictability compared with the measured data. Overall, the trained BP-ANN model is found to be much more efficient and accurate by means of flow stress prediction with respect to the experimental data for an entire tested conditions.


Sign in / Sign up

Export Citation Format

Share Document