scholarly journals Experimental analysis of vibration control algorithms applied for an off-road vehicle with magnetorheological dampers

2018 ◽  
Vol 37 (3) ◽  
pp. 619-639 ◽  
Author(s):  
Piotr Krauze ◽  
Jerzy Kasprzyk ◽  
Andrzej Kozyra ◽  
Jaroslaw Rzepecki

The paper presents an experimental analysis of the selected feedback vibration control schemes dedicated to magnetorheological dampers, related to ride comfort and road holding. They were applied in a complex vibration control system installed in a commercially available off-road vehicle. Original shock-absorbers of the vehicle were replaced with magnetorheological dampers. The control system takes advantage of numerous sensors installed in the vehicle tracking its motion, i.e. accelerometers, suspension deflection sensors (linear variable differential transformer) and IMU module. Vibration control algorithms: Skyhook, PI, and Groundhook were tested experimentally using mechanical exciters adapted for diagnosis of a vehicle suspension system. Since the presented semi-active vibration control requires the magnetorheological damper inverse model to be applied, accurate operation of this model significantly influences the quality of vibration control. Therefore, additional analysis was related to application of measurements from accelerometers or suspension deflection sensors in the inverse model. Presented variants of control algorithms were compared by means of transmissibility characteristics evaluated in the frequency domain as well as using ride-comfort- and driving-safety-related quality indices. It was confirmed that the Skyhook control as well as PI improved ride comfort, whereas Groundhook control improved road holding and decreases vibration of the wheels. Furthermore, it was shown that both approaches to the relative velocity estimation, based on accelerometers and linear variable differential transformers, can be used in this application. However, the first solution gives better results in the case of the Skyhook and PI control, whereas application of LVDT sensors is better for the Groundhook algorithm.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Aly Mousaad Aly

This paper presents vibration control of a building model under earthquake loads. A magnetorheological (MR) damper is placed in the building between the first floor and ground for seismic response reduction. A new control algorithm to command the MR damper is proposed. The approach is inspired by a quasi-bang-bang controller; however, the proposed technique gives weights to control commands in a fashion that is similar to a fuzzy logic controller. Several control algorithms including decentralized bang-bang controller, Lyapunov controller, modulated homogeneous friction controller, maximum energy dissipation controller, and clipped-optimal controller are used for comparison. The new controller achieved the best reduction in maximum interstory drifts and maximum absolute accelerations over all the control algorithms presented. This reveals that the proposed controller with the MR damper is promising and may provide the best protection to the building and its contents.


Author(s):  
Chao Chen ◽  
Yu Shing Chan ◽  
Li Zou ◽  
Wei-Hsin Liao

Dampers are the parts of suspensions which improve the ride comfort and the safety of vehicles including motorcycles. Magnetorheological dampers are very attractive for motorcycle suspensions, because of their controllable properties and their fast responses. Considerable energy is wasted owing to the energy dissipation by dampers encountering road irregularities and accelerating processes during everyday use of motorcycles. In addition, the current magnetorheological suspension systems depend on the power supply of batteries. Therefore, in this paper, a self-powered magnetorheological damper for motorcycle suspensions is proposed and implemented for the first time. It can convert the wasted mechanical energy into useful electrical energy to power itself. There are great merits in this such as energy saving, independence of extra batteries and less maintenance in comparison with conventional magnetorheological suspension systems, while keeping controllable performances. A customized prototype of the self-powered magnetorheological damper that is compatible with a motorcycle is developed and actually implemented in a motorcycle. Modelling for the self-powered magnetorheological damper is developed and validated by laboratory testing. Laboratory testing showed that the self-powered feature works well to generate the electrical power and to vary the magnetorheological damping force. Preliminary system-level testing showed that a self-powered magnetorheological suspension results in a better ride comfort, compared with that of a magnetorheological suspension without power generation. The results showed that implementing self-powered magnetorheological dampers in motorcycle suspensions is feasible and beneficial.


2020 ◽  
Vol 25 (4) ◽  
pp. 504-512
Author(s):  
Robert Pierce ◽  
Sudhir Kaul ◽  
Jacob Friesen ◽  
Thomas Morgan

This paper presents experimental results from the development of a rear suspension system that has been designed for a mountain bike. A magnetorheological (MR) damper is used to balance the need of ride comfort with performance characteristics such as handling and pedaling efficiency by using active control. A preliminary seven degree-of-freedom mathematical model has also been developed for the suspension system. Two control algorithms have been tested in this study: on/off control and proportional control. The rear suspension system has been integrated into an existing bike frame and tested on a shaker table as well as a mountain trail. Shaker table testing demonstrates the effectiveness of the damper. Trail testing indicates that the MR damper-based shock absorber can be used to implement different control algorithms. Test results indicate that the control algorithm can be further investigated to accommodate rider preferences and desired performance characteristics.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1505-1513
Author(s):  
Keigo Ikeda ◽  
Ayato Endo ◽  
Ryosuke Minowa ◽  
Hideaki Kato ◽  
Takayoshi Narita

In the current automobile industry, the demand for ultra-compact vehicles as a means of transportation for elderly people and other travelers, has been increasing. The effect of vibration on the ride comfort of these vehicles is significant because of their small size and low weight. The vibration will increase the discomfort perceived by persons in the vehicle. Therefore, it is necessary to develop a vibration control system for safe and comfortable driving. To improve ride comfort, this research group proposed an active seat suspension using a voice coil motor at the seat section of the vehicle. In this study, the influence of jerk on the psychological state, which was obtained from bioinstrumentation, was investigated.


2016 ◽  
Vol 24 (4) ◽  
pp. 808-821 ◽  
Author(s):  
Angel L Morales ◽  
Antonio J Nieto ◽  
José M Chicharro ◽  
Publio Pintado

Semi-active and active suspensions can improve both ride comfort and handling compared to passive suspensions. The authors have proposed a suspension comprising a pneumatic system capable of changing the stiffness of the suspension and a semi-active magnetorheological damper capable of controlling the suspension damping. Eight configurations of this magnetorheological/pneumatic suspension result from combining two possible stiffnesses (compliant and stiff) and four possible means of producing damping (constant low, constant high, on-off skyhook control and on-off balance control). The minimization of a cost function, which considers both ride comfort and handling, leads to decision maps which indicate the most appropriate configuration depending on vehicle velocity and two pieces of information about the road: the international roughness index and the curve radius. All this information can be gathered from a GPS system and toggling between set-ups is fast, efficient, and easily done by simply opening or closing pipes in the pneumatic system and modifying the current supply in the magnetorheological dampers. The proposed magnetorheological/pneumatic suspension achieves the same roll angle levels as in a comparable passive vehicle while improving ride comfort by reducing acceleration by up to 30%.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Zhu ◽  
Xiao-ting Rui

A vibration control system is put forward using a magnetorheological damper (MRD) and a magnetorheological elastomer (MRE) connected in series. In order to model the hysteresis of the MRD, a Bouc-Wen model and a corresponding parameter identification method are developed for the MRD. The experimental results validate the proposed Bouc-Wen model that can predict the hysteretic behavior of the MRD accurately. The role of the MRE is illustrated by an example of a single degree-of-freedom system. A semiactive vibration control strategy of the proposed vibration control system is proposed. To validate this new approach, experiments are conducted and the results highlight significantly improved vibration reduction effect of the proposed vibration control system than the vibration control system only using the MRD.


2019 ◽  
Vol 55 (Supplement) ◽  
pp. 1D1-5-1D1-5
Author(s):  
Keigo IKEDA ◽  
Ryosuke MINOWA ◽  
Ayato ENDO ◽  
Hideaki KATO ◽  
Takayoshi NARITA

2018 ◽  
Vol 38 (2) ◽  
pp. 852-870 ◽  
Author(s):  
Piotr Krauze ◽  
Jerzy Kasprzyk ◽  
Jaroslaw Rzepecki

The paper presents an analysis of vehicle vibration, ride comfort and handling which have a decisive influence on health and safety of a driver. Experiments were carried out for a commercially available experimental all-terrain vehicle in the field in hard conditions with retaining the sufficient repeatability. The vehicle is equipped with a complex vibration control system, taking advantage of four automotive magnetorheological dampers. Numerous sensors, which measure acceleration in four points of the vehicle body, near the driver’s seat, feet and hands, body orientation in space and speed of vehicle wheels, are available in the vehicle. They were used for evaluation of magnetorheological dampers’ control signals and analysis of vibration affecting the driver. Constant values of magnetorheological damper control current were used for emulation of different settings of passive suspension. The analysis performed in frequency domain showed how vibration propagates in a medium-sized all-terrain vehicle and indicated that driver’s hands are mostly affected by the road-induced vibration. It was also confirmed that the greatest improvement of ride comfort can be obtained for the soft suspension, i.e. uncontrolled magnetorheological dampers. Furthermore, the Skyhook algorithm was implemented, including the proportional control of the magnetorheological damper force and the inverse Tanh model of the magnetorheological damper. It was validated for the wideband road-induced excitation contrary to the experiments commonly presented in the literature, which are performed only for harmonic excitation. It was shown that the properly tuned Skyhook algorithm enables improving vehicle handling compared to the passive suspension and simultaneously it can maintain the similar or even better results of ride comfort.


Sign in / Sign up

Export Citation Format

Share Document