scholarly journals The transmissibility of a vibration isolation system with ball-screw inerter based on complex mass

2018 ◽  
Vol 37 (4) ◽  
pp. 1097-1108 ◽  
Author(s):  
Huabing Wen ◽  
Junhua Guo ◽  
Yang Li ◽  
Yue Liu ◽  
Kun Zhang

The wide application of the ball-screw inerter for vibration isolation has made it increasingly important to precisely determine the vibration transmissibility of the isolation system. In this reported work, the transmissibility of a vibration isolation system containing an inerter was predicted by using a complex mass M* in the calculations. The reported theoretical analysis showed that in the design of the type II inerter-spring-damper and inerter-rubber vibration isolation systems, the inertance-mass ratio must be less than twice the damping ratio to achieve improved vibration isolation performance when designing the system. To validate the findings, experimental tests were conducted on the type II inerter-spring-damper and inerter-rubber vibration isolation systems with ball-screw inerter. The experimental results showed that, based on M*, the transmissibility of these two systems was close to the experimental results, which illustrated the rationale for using M*. The results of this reported study will help facilitate the parameter design and performance analysis of a vibration isolation system with an inerter.

Author(s):  
Md. Emdadul Hoque ◽  
Takeshi Mizuno ◽  
Yuji Ishino ◽  
Masaya Takasaki

A vibration isolation system is presented in this paper which is developed by the combination of multiple vibration isolation modules. Each module is fabricated by connecting a positive stiffness suspension in series with a negative stiffness suspension. Each vibration isolation module can be considered as a self-sufficient single-degree-of-freedom vibration isolation system. 3-DOF vibration isolation system can be developed by combining three modules. As the number of motions to be controlled and the number of actuators are equal, there is no redundancy in actuators in such vibration isolation systems. Experimental results are presented to verify the proposed concept of the development of MDOF vibration isolation system using vibration isolation modules.


2013 ◽  
Vol 6 (4) ◽  
pp. 559-563
Author(s):  
Justinas Kuncė ◽  
Mindaugas Jurevičius

The paper discusses the efficiency of a vibration isolation system made of the optical table and two negative-stiffness tables and considers excitation referring to harmonic and nonharmonic methods in the frequency range of 0,2–110 Hz. The article reviews the types and sources of vibrations and types of vibration isolation systems, including those of negative-stiffness. The paper also presents the methodology of experimental tests and proposes research on vibration transmissibility. A composite system consisting of two vibration isolation table having negative stiffness and an air table has been tested. The results and conclusions of experimental analysis are suggested at the end of the article. Santrauka Nagrinėjama vibroizoliacinės sistemos, sudarytos iš optinio stalo ir dviejų neigiamo standumo staliukų, efektyvumas žadinant harmoniniu ir neharmoniniais būdais 0,2–110 Hz diapazone. Aprašyta eksperimentinių tyrimų atlikimo metodika ir atlikti virpesių perduodamumo tyrimai. Ištirta sudėtinė sistema, sudaryta iš dviejų neigiamo standumo virpesių izoliavimo staliukų ir optinio stalo. Nustatytos vibracijų slopinimo charakteristikos. Pateikti eksperimentų metu gauti rezultatai ir išvados.


2021 ◽  
pp. 107754632110005
Author(s):  
Yonglei Zhang ◽  
Guo Wei ◽  
Hao Wen ◽  
Dongping Jin ◽  
Haiyan Hu

The vibration isolation system using a pair of oblique springs or a spring-rod mechanism as a negative stiffness mechanism exhibits a high-static low-dynamic stiffness characteristic and a nonlinear jump phenomenon when the system damping is light and the excitation amplitude is large. It is possible to remove the jump via adjusting the end trajectories of the above springs or rods. To realize this idea, the article presents a vibration isolation system with a cam–roller–spring–rod mechanism and gives the detailed numerical and experimental studies on the effects of the above mechanism on the vibration isolation performance. The comparative studies demonstrate that the vibration isolation system proposed works well and outperforms some other vibration isolation systems.


2020 ◽  
Vol 10 (7) ◽  
pp. 2273 ◽  
Author(s):  
Shuai Wang ◽  
Wenpen Xin ◽  
Yinghao Ning ◽  
Bing Li ◽  
Ying Hu

This paper proposes a new kind of quasi-zero-stiffness (QZS) isolation system that has the property of low-dynamic but high-static stiffness. The negative stiffness was produced using two magnetic rings, the magnetization of which is axial. First, the force–displacement characteristic of the two coupled magnetic rings was developed and the relationship between the parameters of the magnetic rings and the stiffness of the system was investigated. Then, the dynamic response of the QZS was analyzed. The force transmissibility of the system was calculated and the effects of the damping ratio and excitation amplitude on the isolation performance were investigated. The prototype of the QZS system was developed to verify the isolation effects of the system based on a comparison with a linear vibration isolation platform. Lastly, the improvement of the QZS system was conducted based on changing the heights of the ring magnets and designing a proper non-linear spring. The analysis shows the QZS system after improvement shows better isolation effects than that of the non-improved system.


2013 ◽  
Vol 397-400 ◽  
pp. 295-303 ◽  
Author(s):  
Fu Niu ◽  
Ling Shuai Meng ◽  
Wen Juan Wu ◽  
Jing Gong Sun ◽  
Wei Hua Su ◽  
...  

The quasi-zero-stiffness vibration isolation system has witnessed significant development due to the pressing demands for low frequency and ultra-low frequency vibration isolation. In this study, the isolation theory and the characteristic of the quasi-zero-stiffness vibration isolation system are illustrated. Based on its implementation mechanics, a comprehensive assessment of recent advances of the quasi-zero-stiffness vibration isolation system is presented. The future research directions are finally prospected.


2020 ◽  
Vol 21 (1) ◽  
pp. 103 ◽  
Author(s):  
Qiang Yu ◽  
Dengfeng Xu ◽  
Yu Zhu ◽  
Gaofeng Guan

As the damping ratio determines the response of a vibration isolation system at resonance, it is very necessary to estimate the damping ratio quickly and economically for an evaluation of the effectiveness to adjust the damping in practical engineering applications. An efficient method named the “ζ-Tr” method with the characteristics of simple operation and a high accuracy is introduced to estimate the damping ratio in this paper. According to the transmissibility curve, the specific mathematical relationship in which the value of the resonance peak corresponds to the value of the damping ratio is analysed theoretically. In this case, the recognition of the resonance peak can be used to directly estimate the damping ratio without an approximation or simplification. The “ζ-Tr” method is faster, more accurate and less costly than other estimation methods. Finally, the correctness of the “ζ-Tr” method is verified by a simulation and an experiment.


Author(s):  
V.V. Kovalev ◽  

At the present, the improvement of vibration isolation systems for equipment, machines and units remains an urgent task. The ways to solve this problem are based on the optimization of existing structures, the development and application of new vibration-insulating elements as well as the improvement of design methods. In particular, to ensure the reliable functioning of agricultural machines, units, working elements and other mechanization means for the technological processes of agricultural production one of the perspective areas is the use of hydraulic vibra-tion mounts in suspension systems for units. This type of mounts is used to mount engines, cabins of agricultural vehicles, and power units. This paper discusses the simu-lation of the dynamic behavior of a power unit attached to a fixed base by the hydraulic mounts. It is proposed to use approximating functions modelling real stiffness character-istics of the mounts. A comparative analysis with a similar design using rubber-metal mounts as vibration-insulating elements is presented.


Meccanica ◽  
2021 ◽  
Author(s):  
J. Pérez-Aracil ◽  
E. Pereira ◽  
Iván M. Díaz ◽  
P. Reynolds

AbstractThis work studies the influence of a vibration isolator on the response of a flexible base structure. Two strategies are compared: passive and active vibration isolation (PVI, AVI). Although the multiple advantages of AVI over PVI techniques are well known, their effect in the base structure has not to date been compared. This interaction has an important role in the performance of the general control system, especially when the vibration isolation system is not the only system on the base structure or when there are multiple isolators working simultaneously on it. In addition, the structural serviceability of the base structure can also be affected. The analysis of the vibration isolation problem is made from a wide perspective, including the effect that isolator has on the base structure. Hence assuming the base structure is a non-rigid system. The effect of the isolation system on the base response is studied for an extensive range of base structures, thus showing different possible scenarios. The influence is quantified by comparing the peak magnitude response of the base when both passive and active vibration isolation techniques are used. The theoretical results have been corroborated by undertaking experimental tests on a full-scale laboratory structure.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yeon-Hyeok Park ◽  
Mun-Shin Jo ◽  
Eung-Shik Lee ◽  
Hyun-Ung Oh

A spaceborne cryogenic cooler induces undesirable microvibration disturbances during its on-orbit operation, which is one of the main sources that degrades the image quality of submeter-level high-resolution observation satellites. Several types of vibration isolation systems based on passive approaches have been developed for reducing the microvibration of the cooler. A coil-spring-type passive vibration isolation system developed in a previous study has shown excellent performance in both launch vibration and on-orbit microvibration isolation. To improve the capability of the conventional cooler isolator, including the position sensitivity and launch vibration reduction, we propose a new version of a dual coil-spring-type passive vibration isolator system. The effectiveness of the newly proposed design was validated through a microjitter measurement test, position sensitivity test, and qualification-level launch vibration test of the isolator.


2013 ◽  
Vol 467 ◽  
pp. 410-415 ◽  
Author(s):  
Vladimir Smirnov ◽  
Vladimir Mondrus

The article deals with probability analysis for a vibration isolation system of sensitive equipment. Vibration isolation system is subjected to external base vibrations due to ambient oscillations (background noise). Considering Gauss distribution for ambient vibrations, we estimate the probability when the relative displacement of isolated mass will still be lower than the vibration criteria. The problem is solved in three-dimensional space, evolved by the system parameters damping and natural frequency. According to this probability distribution, the chance of exceeding vibration criteria for a vibration isolation system is evaluated and different vibration isolation systems are compared.


Sign in / Sign up

Export Citation Format

Share Document