scholarly journals Analysis of in-cylinder pressure oscillation and its effect on wall heat transfer

2020 ◽  
pp. 146808742093236
Author(s):  
Mateos Kassa ◽  
Thomas Leroy ◽  
Anthony Robert ◽  
Fabien Vidal-Naquet

In-cylinder pressure oscillations in internal combustion engines have been associated with increased heat losses and damages to the engine components. The links between the acoustic waves and the increased heat transfer (and potentially ensuing engine damages) have not yet been well understood. In this study, a high-fidelity large eddy simulation model incorporating an auto-ignition model is used to simulate the combustion process and the associated pressure oscillation at various engine operating conditions. The study serves to develop a better understanding of the acoustic waves in a combustion chamber and their effect on wall heat transfer. First, a simplified model of the pressure oscillations is proposed and shown to accurately characterize the pressure in the combustion chamber. Second, the simplified pressure model and acoustic theory are leveraged to develop a model of the in-cylinder gas velocities. Finally, a heat transfer model is presented that takes into consideration the pressure/velocity oscillations and the inherent acoustic properties of the trapped gas. The increase in heat transfer is shown to primarily stem from an increased heat transfer coefficient due to the velocity oscillations of the trapped gas. The results are consistent with previously observed experimental measurements of the heat flux in the presence of pressure oscillations.

Author(s):  
S. Hubbard ◽  
A. P. Dowling

A theory is developed to describe low frequency acoustic waves in the complicated diffuser/combustor geometry of a typical industrial gas turbine. This is applied to the RB211-DLE geometry to give predictions for the frequencies of the acoustic resonances at a range of operating conditions. The main resonant frequencies are to be found around 605 Hz (associated with the plenum) and around 461 Hz and 823 Hz (associated with the combustion chamber), as well as one at around 22 Hz (a bulk mode associated with the system as a whole).


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Dekun Gao ◽  
Jianxiu Qin ◽  
Huiqiang Zhang

Based on the URANS equation, a numerical simulation is carried out for acoustic properties of the thruster chamber with coaxial injectors and plenum chamber in a liquid rocket engine. Pressure oscillations with multiacoustic modes are successfully excited in the chamber by using the constant volume bomb method. FFT analysis is applied to obtain the acoustic properties of eigenfrequencies, power amplitudes, and damping rates for each excited acoustic mode. Compared with the acoustic properties in the model chamber with and without an injector as well as with and without the plenum chamber, it can be found that the injector with one open end and one half-open end still can work as a quarter-wave resonator. The power amplitudes of the acoustic mode can be suppressed significantly when its eigenfrequency is close to the tuning frequency of the injector, which is achieved by Cutting down the pressure Peak and Raising up the pressure Trough (CPRT). Compared with the acoustic properties in the model chamber with and without the plenum chamber, it can be found that 1L acoustic pressure oscillation is inhibited completely by the plenum chamber and other acoustic pressure oscillations are also suppressed in a different extent. The injector and plenum chamber have a little effect on the eigenfrequencies and damping rate of each acoustic mode. For multimode pressure oscillation, it is better for tuning frequency of the injector closing to the lower eigenfrequency acoustic mode, which will be effective for suppression of these multiacoustic modes simultaneously.


Author(s):  
Stefan Busam ◽  
Axel Glahn ◽  
Sigmar Wittig

Increasing efficiencies of modern aero-engines are accompanied by rising turbine inlet temperatures, pressure levels and rotational speeds. These operating conditions require a detailed knowledge of two-phase flow phenomena in secondary air and lubrication oil systems in order to predict correctly the heat transfer to the oil. It has been found in earlier investigations that especially at high rotational speeds the heat transfer rate within the bearing chambers is significantly increased with negative effects on the heat to oil management. Furthermore, operating conditions are reached where oil coking and oil fires are more likely to occur. Therefore, besides heat sources like bearing friction and churning, the heat transfer along the housing wall has to be considered in order to meet safety and reliability criteria. Based on our recent publications as well as new measurements of local and mean heat transfer coefficients, which were obtained at our test facility for engine relevant operating conditions, an equation for the internal bearing chamber wall heat transfer is proposed. Nusselt numbers are expressed as a function of non-dimensional parameter groups covering influences of chamber geometry, flow rates and shaft speed.


Author(s):  
Jean-Michel Lourier ◽  
Axel Widenhorn ◽  
Berthold Noll ◽  
Michael Sto¨hr ◽  
Manfred Aigner

Acoustic measurements within combustion chambers are expensive due to high thermal loads applied on the measurement devices at operating conditions. As a more feasible substitute, pressure ducts can be used to lead acoustic waves from combustion chambers to externally mounted microphones. Since these pressure ducts are purged by nitrogen at atmospheric temperature, high thermal loads are avoided. However, the acoustic signal measured within the pressure ducts is altered compared to the signal within the combustion chamber. This change in the acoustic signal can be characterised by means of the acoustic transfer function of the pressure duct, which mainly depends on the pressure ducts geometry and the combustion chambers temperature distribution. The main subject of the present paper is to analyse the influence of the combustion chambers temperature distribution on the acoustic transfer function of pressure ducts. For this scope, experiments at standard conditions and transient CFD simulations for different temperature distributions have been carried out. The acoustic signal measured in the pressure duct is found to be amplified with increasing temperatures within the combustion chamber. Moreover this amplification grows with increasing frequency of the acoustic signals.


Author(s):  
Mirko Baratta ◽  
Andrea Emilio Catania ◽  
Alessandro Ferrari

In Multijet Common Rail (C.R.) systems, the capability to manage multiple injections with full flexibility in the choice of the dwell time (DT) between consecutive solenoid current pulses is one of the most relevant design targets. Pressure oscillations triggered by the nozzle closure after each injection event induce disturbances in the amount of fuel injected during subsequent injections. This causes a remarkable dispersion in the mass of fuel delivered by each injection shot when DT is varied. The present works aims at investigating hydraulic circuit design keys to improve multiple injection performance of C.R. systems, by virtually removing the dependence of the injected fuel amount on DT. A Multi-Jet C.R. of the latest solenoid-type generation was experimentally tested at engine-like operating conditions on a high performance test bench. The considerable influence that the injector supplying pipe can exert on induced pressure oscillation frequency and amplitude was widely investigated and a physical explanation of cause-effect relationships was found by energetics considerations, starting from experimental tests. An optimization study was carried out to identify the best geometrical configurations of the injector supplying pipes so as to minimize pressure oscillations. The analysis was carried out with the aid of a previously developed simple zero-dimensional model, allowing the evaluation of pressure wave frequencies as functions of main system geometric data. Purposely designed orifices were introduced into the rail-pipe connectors or at the injector inlet, so as to damp pressure oscillations. Their effects on injection system performance were experimentally analyzed. Hydraulic circuit solutions that apply both optimized injector inlet-pipe sizes and oscillation damping orifices at the rail outlet were thoroughly investigated. Finally, the influence of the rail volume on pressure wave dynamics was studied to evaluate the possibility of severely reducing the rail capacitance. This would lead to a system, not only with reduced overall dimensions, but also with a prompter dynamic response during engine transients.


Sign in / Sign up

Export Citation Format

Share Document