Numerical analysis of kinetic mechanisms for battery thermal runaway prediction in lithium-ion batteries

2021 ◽  
pp. 146808742110299
Author(s):  
Antonio García ◽  
Javier Monsalve-Serrano ◽  
Rafael Lago Sari ◽  
Álvaro Fogué Robles

The urgent need for reducing the carbon dioxide emissions has led to the powertrain electrification at different levels such as hybridization or pure electric vehicles. Despite the benefits in terms of local pollution reduction and lower carbon dioxide footprint that may be achieved with this technology, new hazards have been introduced. Among them, the combustion of the battery pack due to abuse conditions, also known as thermal runaway, is one of the biggest concerns. It can lead to the vehicle combustion under unnoticed failure conditions, threating the driver security. In this sense, different investigations have been carried out with the aim of providing a proper description of the reactions that lead to this phenomenon. Reaction mechanisms have been proposed in the literature for lithium-ion battery considering the most common battery chemistries. Nonetheless, their application leads to different results, which may hinder their utilization in modeling critical operating conditions for thermal runaway. This investigation proposes a detailed assessment of the most common reaction mechanisms, comparing their capability on reproducing the different reaction paths that lead to thermal runaway conditions to explore and depict state of the art of thermal runaway modeling. Additionally, a detailed analysis is performed to define the differences in terms of decomposition and formation reactions for each one of them. The results of this investigation demonstrate that the mechanism proposed by Kriston provides the best results trade-off considering different investigations in differential scanning calorimeter and accelerated rate calorimeter. In addition, it was found that some mechanisms have been adjusted to perform similar to the experimental results, even in the case of not having a physical meaning.

2019 ◽  
Vol 21 (41) ◽  
pp. 22740-22755 ◽  
Author(s):  
Mei-Chin Pang ◽  
Yucang Hao ◽  
Monica Marinescu ◽  
Huizhi Wang ◽  
Mu Chen ◽  
...  

Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries.


Author(s):  
Jongsup Hong ◽  
Ahmed F. Ghoniem ◽  
Randall Field ◽  
Marco Gazzino

Oxy-fuel combustion coal-fired power plants can achieve significant reduction in carbon dioxide emissions, but at the cost of lowering their efficiency. Research and development are conducted to reduce the efficiency penalty and to improve their reliability. High-pressure oxy-fuel combustion has been shown to improve the overall performance by recuperating more of the fuel enthalpy into the power cycle. In our previous papers, we demonstrated how pressurized oxy-fuel combustion indeed achieves higher net efficiency than that of conventional atmospheric oxy-fuel power cycles. The system utilizes a cryogenic air separation unit, a carbon dioxide purification/compression unit, and flue gas recirculation system, adding to its cost. In this study, we perform a techno-economic feasibility study of pressurized oxy-fuel combustion power systems. A number of reports and papers have been used to develop reliable models which can predict the costs of power plant components, its operation, and carbon dioxide capture specific systems, etc. We evaluate different metrics including capital investments, cost of electricity, and CO2 avoidance costs. Based on our cost analysis, we show that the pressurized oxy-fuel power system is an effective solution in comparison to other carbon dioxide capture technologies. The higher heat recovery displaces some of the regeneration components of the feedwater system. Moreover, pressurized operating conditions lead to reduction in the size of several other critical components. Sensitivity analysis with respect to important parameters such as coal price and plant capacity is performed. The analysis suggests a guideline to operate pressurized oxy-fuel combustion power plants in a more cost-effective way.


Author(s):  
Kevin Westhoff ◽  
Todd M. Bandhauer

The high thermal conduction resistances of lithium-ion batteries severely limits the effectiveness of conventional external thermal management systems. To remove heat from the insulated interior portions of the cell, a large temperature difference is required across the cell, and the center of the electrode stack can exceed the thermal runaway onset temperature even under normal cycling conditions. One potential solution is to remove heat locally inside the cell by evaporating a volatile component of the electrolyte. In this system, a high vapor pressure co-solvent evaporates at a low temperature prior to triggering thermal runaway. The vapor generated is transported to the skin of the cell, where it is condensed and transported back to the internal portion of the cell via surface tension forces. For this system to function, a co-solvent that has a boiling point below the thermal runaway onset temperature must also allow the cell to function under normal operating conditions. Low boiling point hydrofluoroethers (HFE) were first used by Arai to reduce LIB electrolyte flash points, and have been proven to be compatible with LIB chemistry. In the present study, HFE-7000 and ethyl methyl carbonate (EMC) 1:1 by volume are used to solvate 1.0 M LiTFSI to produce a candidate electrolyte for the proposed cooling system. Copper antimonide (Cu2Sb) and lithium iron phosphate (LiFePO4) are used in a full cell architecture with the candidate electrolyte in a custom electrolyte boiling facility. The facility enables direct viewing of the vapor generation within the full cell and characterizes the galvanostatic electrochemical performance. Test results show that the LFP/Cu2Sb cell is capable of operation even when a portion of the more volatile HFE-7000 is continuously evaporated.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Koji Kikuhara ◽  
Akihiro Shibata ◽  
Akemi Ito ◽  
Dallwoo Kim ◽  
Yasuhiro Ishikawa ◽  
...  

The reduction of both exhaust gases and carbon dioxide emissions is necessary to meet future emissions regulations for diesel engines. Exhaust after-treatment devices are gradually being applied to diesel engines to reduce exhaust gases. Diesel particulate filters (DPF), an after-treatment device for diesel engines, in some cases require fuel post injection for regeneration. Post injection is usually conducted at the midpoint of the expansion stroke, and therefore causes fuel adhesion to the cylinder wall. However, using biofuels in a diesel engine is an effective way of reducing carbon dioxide emissions. It is well known that biofuels are chemically unstable, but the effects of biofuels on piston lubrication condition have not been thoroughly studied. In this study, piston lubrication condition during post injection in a single cylinder DI diesel engine using biofuel was investigated. Piston and ring friction forces were measured under engine operating conditions by means of a floating liner device to investigate the lubrication condition of the piston and rings. Both light fuel oil and biofuel were used in the measurements, with rapeseed methyl ester (RME) being used as the biofuel. Lubricating oil on the cylinder wall was also sampled under engine operating conditions, and the effect of post injection on fuel adhesion to the cylinder wall was analyzed. It was found that the effect of post injection on fuel adhesion to the cylinder wall was remarkable around the top dead center (TDC), and the fuel dilution rate reached approximately 90%. The results of the measurement of the piston friction forces showed that post injection caused an increase in the friction forces at the compression TDC (CTDC) in the cases of both RME and light fuel oil, and the friction forces at CTDC increased according to the delay of the post injection timing. The increase in the piston friction forces was moderate in the case of RME. It seems that the higher viscosity and the oiliness of RME suppressed the increase in piston friction forces at TDC. The following effects were found in this study. Fuel post injection caused fuel adhesion to the cylinder wall. Such phenomena affected the lubrication condition of the piston. In the case of RME, the increase in the piston friction forces caused by post injection was smaller than that of light fuel oil, but the effects on piston lubrication condition in the case of using other biofuels needs to be investigated.


Author(s):  
Muhammad Fikri Irsyad Mat Razi ◽  
Zul Hilmi Che Daud ◽  
Zainab Asus ◽  
Izhari Izmi Mazali ◽  
Mohd Ibtisyam Ardani ◽  
...  

One of the most popular energy sources in electrical circuitry is the lithium-ion battery (LIB) and it can be found in a variety of products from the smallest unit such as Airpod, smartwatch, smartphone to as big as farming drones, industrial robots, and electric vehicles. But the usage of lithium-ion batteries is limited to a range of temperatures. The normal operating temperature range for LIB is 40°C~65°C. Despite this, there are still cases where operating LIB at high temperature is unavoidable for example deep earth pipeline inspection in the oil & gas industry, sterilization of medical tools in the medical industry, harsh condition robots and drones in the industrial sector, and high ambient power storage for photovoltaic system. Operating LIB beyond normal conditions will affect the battery in several ways. In this paper, the effect of temperature on internal resistance is demonstrated by several studies, the results show LIB internal resistance decrease as temperature increase. Operating LIB beyond normal operating conditions can also lead to faster battery degradation. Battery state of health (SOH) is used to indicate battery degradation level. A battery with a low SOH performs poorly in terms of power delivery compared to a high SOH battery. In addition, operating LIB beyond normal operating conditions, stresses such as thermal stress can damage the battery and instigate thermal runaway causing violent combustion and explosion.


Author(s):  
Claus Suldrup Nielsen ◽  
Jesper Schramm ◽  
Anders Ivarsson ◽  
Azhar Malik ◽  
Terese Løvås

A direct injected and turbocharged Euro 5 diesel engine has been set up in a test bench where the vehicle driving conditions of the European NEDC (New European Driving Cycle) test can be simulated. The engine is operated as the engine of a corresponding vehicle, equipped with a similar engine and driving through the NEDC cycle. The regulated gaseous emissions, carbon monoxide, hydrocarbons and nitrogen oxides, as well as particulate numbers and size distributions where measured in 5 selected steady state operating points during the engine test. Fuel consumptions and carbon dioxide emissions where measured as well. The steady state operating conditions were chosen within the engine operating range during a vehicle NEDC test and representing as broad an operating range as possible during the NEDC test. A method is presented in which the NEDC test emissions are calculated from the 5 steady state measurements. It is shown that the method gives emission results that agree well with values that can be expected from the vehicle in question during an NEDC test. In this way a limited number of steady state measurements can be used to simulate vehicle emissions. The reason for carrying out engine experiments instead of vehicle measurements was to obtain well controlled engine conditions and thus better insight in the operation of the engine in the individual phases of operation, and thereby enable evaluation of the possibilities for improving engine performance with respect to emission and fuel consumption reduction. Two different fuels where tested. These were a Fischer-Tropsch fuel, produced from biomass at the Güssing gasification plant in Austria and a commercial diesel from a fuel station in Denmark. The results of the measurements and engine modification considerations showed that bio Fischer-Tropsch fuel does have advantages with respect to particulate and also small advantages with carbon monoxide and carbon dioxide emissions. However, NOx emissions are rather a question of the injection timing of the fuel, and the NOx emissions can be adjusted to give the same level of emissions by changing the injection timing with ordinary diesel. The injection strategy was changed in order to attempt to reduce NOx emissions below the limits in the Euro 6 regulations.


2021 ◽  
Vol 2130 (1) ◽  
pp. 012001
Author(s):  
L Grabowski

Abstract Simulation studies can be used to determine the fuel consumption and carbon dioxide emissions of city buses. The operating conditions of such vehicles are characterised by a very high variability of vehicle speed due to the large number of stops along the route of the bus. During vehicle testing, driving cycles are used to replicate the real-world conditions and to achieve repeatable test conditions. Such a driving cycle is a profile of speed represented as a function of time or as a function of distance. The speed profile over time can be an advantageous determinant, based on laboratory tests, for estimating fuel consumption and pollutant emissions of city buses. The research subject of this paper was the simulation of bus driving under simulated urban traffic conditions, carried out by means of the VECTO software. VECTO is a tool designed to perform the calculations of fuel consumption and carbon dioxide emissions of vehicles. It enables to model the powertrain of trucks and buses and to carry out simulations on various routes defined by driving cycles. The test object was a mega class bus, equipped with a 225 kW engine. The bus has three axles, including the rear drive axle. The scope of research included four cycles: urban, interurban, urbandelivery and interurban. Each of these was analysed in terms of speed and road gradient. The aim of this work was to perform a simulation study of the effect of the vehicle traffic conditions on the amount of CO2 emitted and fuel consumption. The obtained results were analysed.


2014 ◽  
Vol 627 ◽  
pp. 337-341
Author(s):  
Kuang Wen Hsieh ◽  
Chih Shiuan Iu ◽  
Huaang Youh Houng

Small type gasoline engine has the advantage of lightweight and low energy, but its emissions of carbon dioxide will lead to global greenhouse gas growing. This study aims to test the performance of the cultivator between different soil and tools. Comparative test electric and gasoline engine type cultivator contains the following items: energy consumption, carbon dioxide emissions in the job and the operator heart rate change. The results show that the width of 60 cm and depth of 3 cm operating conditions weeding, electric cultivators and gasoline engine cultivator average turn time was 2.9 seconds and 3.3 seconds, with an average forward speed were 0.535 and 0.515 m/s. Comparison of the time and forward speed cornering, the electric cultivator superior gasoline engine cultivator, and can successfully achieve high torque output characteristics weeding needed. Energy consumption and carbon emissions test data show that the loam fields, the average power consumption cost of NT $ 21.2/ha; carbon dioxide emissions by an average of 26 kg/ha. This result shows that energy consumption in the consideration of the performance of carbon dioxide emissions, electric cultivators have lower costs. The test results are displayed in the field; the electric cultivator operator heart rate is lower than the gasoline engine cultivator and has significant difference statistically. Therefore, in the field of long-term operating conditions, the electric cultivator helps reduce physical exertion and operator fatigue.


2016 ◽  
Vol 70 (4) ◽  
Author(s):  
Erlisa Baraj ◽  
Stanislav Vagaský ◽  
Tomáš Hlinčik ◽  
Karel Ciahotný ◽  
Viktor Tekáč

AbstractConstant increase of carbon dioxide emissions from anthropogenic activities leads to the search of options for its recycling and utilization. Although recycled CO


Sign in / Sign up

Export Citation Format

Share Document