scholarly journals Theoretical fractional formulation of a three-dimensional radio frequency ion trap (Paul-trap) for optimum mass separation

2021 ◽  
pp. 146906672110267
Author(s):  
Sarkhosh Seddighi Chaharborj ◽  
Shahriar Seddighi Chaharborj ◽  
Zahra Seddighi Chaharborj ◽  
Pei See Phang

We investigate the dynamics of an ion confined in a Paul–trap supplied by a fractional periodic impulsional potential. The Cantor–type cylindrical coordinate method is a powerful tool to convert differential equations on Cantor sets from cantorian–coordinate systems to Cantor–type cylindrical coordinate systems. By applying this method to the classical Laplace equation, a fractional Laplace equation in the Cantor–type cylindrical coordinate is obtained. The fractional Laplace equation is solved in the Cantor–type cylindrical coordinate, then the ions is modelled and studied for confined ions inside a Paul–trap characterized by a fractional potential. In addition, the effect of the fractional parameter on the stability regions, ion trajectories, phase space, maximum trapping voltage, spacing between two signals and fractional resolution is investigated and discussed.

2017 ◽  
Vol 23 (5) ◽  
pp. 254-271 ◽  
Author(s):  
Sarkhosh S Chaharborj ◽  
Abbas Moameni

In this article, fractional calculus has been applied to study the motion of ions in a three-dimensional radio frequency quadrupole ion trap; we have called this arrangement a fractional quadrupole ion trap. The main purpose of the article is to show that by controlling the fractional parameter of a trapped ion, one can gain a more efficient mass separation. In what follows, we will see that with decreasing the fractional parameter, we can achieve a smaller first stability region. Note that a small stability diagram will result in a good and acceptable mass separation. Various methods can be proposed to obtain a desired ion acceleration with a sufficient accuracy for good mass separation, which is similar to the one obtained by a fractional ion trap. Some of these methods are using the effects of a damping force, a magnetic field or both on the confinement of particles in the quadrupole ion trap. The first stability regions are plotted for all of the aforementioned methods, and simulation results are provided to compare them with those for the fractional case.


2017 ◽  
Vol 23 (5) ◽  
pp. 272-279
Author(s):  
Houshyar Noshad ◽  
Majid Amouhashemi

The cylindrical ion trap is analyzed so that the octupole component of the electric field inside the trap is set to zero. As a consequence, the diameter to height ratio is computed to be 1.20 for which the quadrupole component of the cylindrical ion trap is dominant. Afterwards, it is concluded that the electric potential inside the trap as well as the corresponding stability regions are very similar to those obtained for an ideal Paul trap with pure quadrupole electric field. Furthermore, we drew a conclusion that the stability diagrams of the cylindrical ion trap without octupole term and the stability diagrams of the Paul trap have 5.6%, 3.7%, and 2.9% discrepancy for the first, second, and third stability diagrams, respectively. It should be noted that, expansion of the electric potential inside the cylindrical ion trap in terms of the multipole electric field components and making the advantages of the octupole term elimination has not been reported in the literature previously.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jin Woo Jang ◽  
Robert M. Strain ◽  
Tak Kwong Wong

<p style='text-indent:20px;'>Although the nuclear fusion process has received a great deal of attention in recent years, the amount of mathematical analysis that supports the stability of the system seems to be relatively insufficient. This paper deals with the mathematical analysis of the magnetic confinement of the plasma via kinetic equations. We prove the global wellposedness of the <i>Vlasov-Maxwell</i> system in a two-dimensional annulus when a huge (<i>but finite-in-time</i>) external magnetic potential is imposed near the boundary. We assume that the solution is axisymmetric. The authors hope that this work is a step towards a more generalized work on the three-dimensional Tokamak structure. The highlight of this work is the physical assumptions on the external magnetic potential well which remains finite <i>within a finite time interval</i> and from that, we prove that the plasma never touches the boundary. In addition, we provide a sufficient condition on the magnitude of the external magnetic potential to guarantee that the plasma is confined in an annulus of the desired thickness which is slightly larger than the initial support. Our method uses the cylindrical coordinate forms of the <i>Vlasov-Maxwell</i> system.</p>


Author(s):  
Abdelkrim Merah ◽  
Ridha Kelaiaia ◽  
Faiza Mokhtari

Abstract The Taylor-Couette flow between two rotating coaxial cylinders remains an ideal tool for understanding the mechanism of the transition from laminar to turbulent regime in rotating flow for the scientific community. We present for different Taylor numbers a set of three-dimensional numerical investigations of the stability and transition from Couette flow to Taylor vortex regime of a viscous incompressible fluid (liquid sodium) between two concentric cylinders with the inner one rotating and the outer one at rest. We seek the onset of the first instability and we compare the obtained results for different velocity rates. We calculate the corresponding Taylor number in order to show its effect on flow patterns and pressure field.


2019 ◽  
Vol 952 (10) ◽  
pp. 47-54
Author(s):  
A.V. Komissarov ◽  
A.V. Remizov ◽  
M.M. Shlyakhova ◽  
K.K. Yambaev

The authors consider hand-held laser scanners, as a new photogrammetric tool for obtaining three-dimensional models of objects. The principle of their work and the newest optical systems based on various sensors measuring the depth of space are described in detail. The method of simultaneous navigation and mapping (SLAM) used for combining single scans into point cloud is outlined. The formulated tasks and methods for performing studies of the DotProduct (USA) hand-held laser scanner DPI?8X based on a test site survey are presented. The accuracy requirements for determining the coordinates of polygon points are given. The essence of the performed experimental research of the DPI?8X scanner is described, including scanning of a test object at various scanner distances, shooting a test polygon from various scanner positions and building point cloud, repeatedly shooting the same area of the polygon to check the stability of the scanner. The data on the assessment of accuracy and analysis of research results are given. Fields of applying hand-held laser scanners, their advantages and disadvantages are identified.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1510 ◽  
Author(s):  
Mohammad Ehsan Taghavizadeh Yazdi ◽  
Simin Nazarnezhad ◽  
Seyed Hadi Mousavi ◽  
Mohammad Sadegh Amiri ◽  
Majid Darroudi ◽  
...  

The use of naturally occurring materials in biomedicine has been increasingly attracting the researchers’ interest and, in this regard, gum tragacanth (GT) is recently showing great promise as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT can be easily extracted from the stems and branches of various species of Astragalus. This anionic polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material. The stability against microbial, heat and acid degradation has made GT an attractive material not only in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery). Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft tissue healing strategies. However, more research is needed for defining GT applicability in the future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art overview of GT in biomedicine and tries to open new horizons in the field based on its inherent characteristics.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
András L. Szabó ◽  
Bitan Roy

Abstract We compute the effects of strong Hubbardlike local electronic interactions on three-dimensional four-component massless Dirac fermions, which in a noninteracting system possess a microscopic global U(1) ⊗ SU(2) chiral symmetry. A concrete lattice realization of such chiral Dirac excitations is presented, and the role of electron-electron interactions is studied by performing a field theoretic renormalization group (RG) analysis, controlled by a small parameter ϵ with ϵ = d−1, about the lower-critical one spatial dimension. Besides the noninteracting Gaussian fixed point, the system supports four quantum critical and four bicritical points at nonvanishing interaction couplings ∼ ϵ. Even though the chiral symmetry is absent in the interacting model, it gets restored (either partially or fully) at various RG fixed points as emergent phenomena. A representative cut of the global phase diagram displays a confluence of scalar and pseudoscalar excitonic and superconducting (such as the s-wave and p-wave) mass ordered phases, manifesting restoration of (a) chiral U(1) symmetry between two excitonic masses for repulsive interactions and (b) pseudospin SU(2) symmetry between scalar or pseudoscalar excitonic and superconducting masses for attractive interactions. Finally, we perturbatively study the effects of weak rotational symmetry breaking on the stability of various RG fixed points.


Author(s):  
Heather Johnston ◽  
Colleen Dewis ◽  
John Kozey

Objective The objectives were to compare cylindrical and spherical coordinate representations of the maximum reach envelope (MRE) and apply these to a comparison of age and load on the MRE. Background The MRE is a useful measurement in the design of workstations and quantifying functional capability of the upper body. As a dynamic measure, there are human factors that impact the size, shape, and boundaries of the MRE. Method Three-dimensional reach measures were recorded using a computerized potentiometric system for anthropometric measures (CPSAM) on two adult groups (aged 18–25 years and 35–70 years). Reach trials were performed holding .0, .5, and 1 kg. Results Three-dimensional Cartesian coordinates were transformed into cylindrical ( r, θ , Z) and spherical ( r, θ, ϕ) coordinates. Median reach distance vectors were calculated for 54 panels within the MRE as created by incremented banding of the respective coordinate systems. Reach distance and reach area were compared between the two groups and the loaded conditions using a spherical coordinate system. Both younger adults and unloaded condition produced greater reach distances and reach areas. Conclusions Where a cylindrical coordinate system may reflect absolute reference for design, a normalized spherical coordinate system may better reflect functional range of motion and better compare individual and group differences. Age and load are both factors that impact the MRE. Application These findings present measurement considerations for use in human reach investigation and design.


Sign in / Sign up

Export Citation Format

Share Document