scholarly journals Gum Tragacanth (GT): A Versatile Biocompatible Material beyond Borders

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1510 ◽  
Author(s):  
Mohammad Ehsan Taghavizadeh Yazdi ◽  
Simin Nazarnezhad ◽  
Seyed Hadi Mousavi ◽  
Mohammad Sadegh Amiri ◽  
Majid Darroudi ◽  
...  

The use of naturally occurring materials in biomedicine has been increasingly attracting the researchers’ interest and, in this regard, gum tragacanth (GT) is recently showing great promise as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT can be easily extracted from the stems and branches of various species of Astragalus. This anionic polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material. The stability against microbial, heat and acid degradation has made GT an attractive material not only in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery). Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft tissue healing strategies. However, more research is needed for defining GT applicability in the future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art overview of GT in biomedicine and tries to open new horizons in the field based on its inherent characteristics.

2021 ◽  
Vol 11 (11) ◽  
pp. 5096
Author(s):  
Aipeng Deng ◽  
Yang Yang ◽  
Shimei Du

Electrospinning, the only method that can continuously produce nanofibers, has been widely used to prepare nanofibers for tissue engineering applications. However, electrospinning is not suitable for preparing clinically relevant three-dimensional (3D) nanofibrous scaffolds with hierarchical pore structures. In this study, recombinant human collagen (RHC)/chitosan nanofibers prepared by electrospinning were combined with porous scaffolds produced by freeze drying to fabricate 3D nanofibrous scaffolds. These scaffolds exhibited high porosity (over 80%) and an interconnected porous structure (ranging from sub-micrometers to 200 μm) covered with nanofibers. As confirmed by the characterization results, these scaffolds showed good swelling ability, stability, and adequate mechanical strength, making it possible to use the 3D nanofibrous scaffolds in various tissue engineering applications. In addition, after seven days of cell culturing, NIH 3T3 was infiltrated into the scaffolds while maintaining its morphology and with superior proliferation and viability. These results indicated that the 3D nanofibrous scaffolds hold great promise for tissue engineering applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yaxin Chen ◽  
Daiming Tang ◽  
Zhiwei Huang ◽  
Xi Liu ◽  
Jun Chen ◽  
...  

AbstractAtomic metal wires have great promise for practical applications in devices due to their unique electronic properties. Unfortunately, such atomic wires are extremely unstable. Here we fabricate stable atomic silver wires (ASWs) with appreciably unoccupied states inside the parallel tunnels of α-MnO2 nanorods. These unoccupied Ag 4d orbitals strengthen the Ag–Ag bonds, greatly enhancing the stability of ASWs while the presence of delocalized 5s electrons makes the ASWs conducting. These stable ASWs form a coherently oriented three-dimensional wire array of over 10 nm in width and up to 1 μm in length allowing us to connect it to nano-electrodes. Current-voltage characteristics of ASWs show a temperature-dependent insulator-to-metal transition, suggesting that the atomic wires could be used as thermal electrical devices.


2018 ◽  
Vol 2018 ◽  
pp. 1-24 ◽  
Author(s):  
Kevin Dzobo ◽  
Nicholas Ekow Thomford ◽  
Dimakatso Alice Senthebane ◽  
Hendrina Shipanga ◽  
Arielle Rowe ◽  
...  

Humans and animals lose tissues and organs due to congenital defects, trauma, and diseases. The human body has a low regenerative potential as opposed to the urodele amphibians commonly referred to as salamanders. Globally, millions of people would benefit immensely if tissues and organs can be replaced on demand. Traditionally, transplantation of intact tissues and organs has been the bedrock to replace damaged and diseased parts of the body. The sole reliance on transplantation has created a waiting list of people requiring donated tissues and organs, and generally, supply cannot meet the demand. The total cost to society in terms of caring for patients with failing organs and debilitating diseases is enormous. Scientists and clinicians, motivated by the need to develop safe and reliable sources of tissues and organs, have been improving therapies and technologies that can regenerate tissues and in some cases create new tissues altogether. Tissue engineering and/or regenerative medicine are fields of life science employing both engineering and biological principles to create new tissues and organs and to promote the regeneration of damaged or diseased tissues and organs. Major advances and innovations are being made in the fields of tissue engineering and regenerative medicine and have a huge impact on three-dimensional bioprinting (3D bioprinting) of tissues and organs. 3D bioprinting holds great promise for artificial tissue and organ bioprinting, thereby revolutionizing the field of regenerative medicine. This review discusses how recent advances in the field of regenerative medicine and tissue engineering can improve 3D bioprinting and vice versa. Several challenges must be overcome in the application of 3D bioprinting before this disruptive technology is widely used to create organotypic constructs for regenerative medicine.


2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Tanveer Ahmad Mir ◽  
Shintaroh Iwanaga ◽  
Taketoshi Kurooka ◽  
Hideki Toda ◽  
Shinji Sakai ◽  
...  

Biofabrication is an emerging multidisciplinary field that makes a revolutionary impact on the researches on life science, biomedical engineering, and both basic and clinical medicine, has progressed tremendously over the past few years. Recently, there has been a big boom in three-dimensional (3D) printing or additive manufacturing (AM) research worldwide, and there is a significant increase not only in the number of researchers turning their attention to AM but also publications demonstrating the potential applications of 3D printing techniques in multiple fields. Biofabrication and bioprinting hold great promise for the innovation of engineering-based organ replacing medicine. In this mini review, various challenges in the field of tissue engineering are focused from the point of view of the biofabrication - strategies to bridge the gap between organ shortage and mission of medical innovation research seek to achieve organ-specific treatments or regenerative therapies. Four major challenges are discussed including (i) challenge of producing organs by AM, (ii) digitalization of tissue engineering and regenerative medicine, (iii) rapid production of organs beyond the biological natural course, and (iv) extracorporeal organ engineering.


Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 7 ◽  
Author(s):  
Marta A. Teixeira ◽  
M. Teresa P. Amorim ◽  
Helena P. Felgueiras

Tissue engineering (TE) holds an enormous potential to develop functional scaffolds resembling the structural organization of native tissues, to improve or replace biological functions and prevent organ transplantation. Amongst the many scaffolding techniques, electrospinning has gained widespread interest because of its outstanding features that enable the production of non-woven fibrous structures with a dimensional organization similar to the extracellular matrix. Various polymers can be electrospun in the form of three-dimensional scaffolds. However, very few are successfully processed using environmentally friendly solvents; poly(vinyl alcohol) (PVA) is one of those. PVA has been investigated for TE scaffolding production due to its excellent biocompatibility, biodegradability, chemo-thermal stability, mechanical performance and, most importantly, because of its ability to be dissolved in aqueous solutions. Here, a complete overview of the applications and recent advances in PVA-based electrospun nanofibrous scaffolds fabrication is provided. The most important achievements in bone, cartilage, skin, vascular, neural and corneal biomedicine, using PVA as a base substrate, are highlighted. Additionally, general concepts concerning the electrospinning technique, the stability of PVA when processed, and crosslinking alternatives to glutaraldehyde are as well reviewed.


2021 ◽  
pp. 088391152110432
Author(s):  
Jaundrie Fourie ◽  
Francois Taute ◽  
Louis du Preez ◽  
Deon de Beer

Chitosan, a biocompatible and biodegradable natural polymer, offers great promise as a biomaterial for tissue engineering applications. Chitosan scaffolds have previously been fabricated using additive manufacturing techniques, however, the use of crosslinkers, weak mechanical stability and structural resolution remain problematic. In this study Chitosan-PVAc biopolymer blends were prepared using a non-organic solvent that can prepare a three-dimensional printable biopolymer in less time than conventional methods. Prepared films were characterised using SEM, FTIR and thermogravimetric analysis. Additionally, the swelling properties, biodegradability and printability of the scaffolds were also studied. The fabricated films were biodegradable within a 3-week period and showed controllable swelling properties. Results indicated no toxicity and cells attached onto films. Additionally, hydrogels showed antibacterial activity against S. aureus, S. epidermidis and E.coli, which could potentially prevent implant related infections. Additive manufacturing simulation of PVAc composite 3% chitosan and PVAc composite 4% chitosan were able to produce a layered scaffold without using crosslinkers and therefore confirming printability. Cytocompabability were assessed using a resazurin assay and cell attachment. From these results, we concluded that the printable PVAc composite 3% chitosan and PVAc composite 4% chitosan biopolymer blends meet the requirements of a biomaterial and can potentially be used for biomedical implants.


2020 ◽  
Author(s):  
Christina Hipfinger ◽  
Ramesh Subbiah ◽  
Anthony Tahayeri ◽  
Avathamsa Athirasala ◽  
Sivaporn Horsophonphong ◽  
...  

AbstractBiomaterial scaffolds have served as the foundation of tissue engineering and regenerative medicine. However, scaffold systems are often difficult to scale in size or shape in order to fit defect-specific dimensions, and thus provide only limited spatiotemporal control of therapeutic delivery and host tissue responses. Here, a lithography-based three-dimensional (3D) printing strategy is used to fabricate a novel miniaturized modular LEGO-like cage scaffold system, which can be assembled and scaled manually with ease. Scalability is based on an intuitive concept of stacking modules, like conventional LEGO blocks, allowing for literally thousands of potential geometric configurations, and without the need for specialized equipment. Moreover, the modular hollow-cage design allows each unit to be loaded with biologic cargo of different compositions, thus enabling controllable and easy patterning of therapeutics within the material in 3D. In summary, the concept of miniaturized cage designs with such straight-forward assembly and scalability, as well as controllable loading properties, is a flexible platform that can be extended to a wide range of materials for improved biological performance.TOC3D printed LEGO-like hollow microcages can be easily assembled, adjoined, and stacked-up to suit the complexity of defect tissues; aid spatial loading of cells and biomolecules; instruct cells migration three-dimensionally; and facilitate cell invasion and neovascularization in-vivo, thus accelerating the process of tissue healing and new tissue formation.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2954 ◽  
Author(s):  
Fiume ◽  
Serino ◽  
Bignardi ◽  
Verné ◽  
Baino

In recent years, bioactive glasses gained increasing scientific interest in bone tissue engineering due to their capability to chemically bond with the host tissue and to induce osteogenesis. As a result, several efforts have been addressed to use bioactive glasses in the production of three-dimensional (3D) porous scaffolds for bone regeneration. In this work, we creatively combine typical concepts of porous glass processing with those of waste management and propose, for the first time, the use of bread as a new sacrificial template for the fabrication of bioactive scaffolds. Preliminary SEM investigations performed on stale bread from industrial wastes revealed a suitable morphology characterized by an open-cell 3D architecture, which is potentially able to allow tissue ingrowth and vascularization. Morphological features, mechanical performances and in vitro bioactivity tests were performed in order to evaluate the properties of these new “sustainable” scaffolds for bone replacement and regeneration. Scaffolds with total porosity ranging from 70 to 85 vol% and mechanical strength comparable to cancellous bone were obtained. Globular hydroxyapatite was observed to form on the surface of the scaffolds after just 48-h immersion in simulated body fluid. The results show great promise and suggest the possibility to use bread as an innovative and inexpensive template for the development of highly-sustainable bone tissue engineering approaches.


Author(s):  
Yahui Zhang ◽  
Yin Yu ◽  
Ibrahim T. Ozbolat

Despite the progress in tissue engineering, several challenges must be addressed for organ printing to become a reality. The most critical challenge is the integration of a vascular network, which is also a problem that the majority of tissue engineering technologies are facing. An embedded microfluidic channel network is probably the most promising solution to this problem. However, the available microfluidic channel fabrication technologies either have difficulty achieving a three-dimensional complex structure or are difficult to integrate within cell printing process in tandem. In this paper, a novel printable vessel-like microfluidic channel fabrication method is introduced that enables direct bioprinting of cellular microfluidic channels in form of hollow tubes. Alginate and chitosan hydrogels were used to fabricate microfluidic channels showing the versatility of the process. Geometric characterization was performed to understand effect of biomaterial and its flow rheology on geometric properties. Microfluidic channels were printed and embedded within bulk hydrogel to test their functionality through perfusion of cell type oxygenized media. Cell viability experiments were conducted and showed great promise of the microfluidic channels for development of vascular networks.


Sign in / Sign up

Export Citation Format

Share Document