Looseness condition feature extraction of viscoelastic sandwich structure using dual-tree complex wavelet packet-based deep autoencoder network

2019 ◽  
Vol 19 (3) ◽  
pp. 873-884
Author(s):  
Yue Si ◽  
Zhousuo Zhang ◽  
Chuiqing Kong ◽  
Shujuan Li ◽  
Guigeng Yang ◽  
...  

It is significant to perform looseness condition detection of viscoelastic sandwich structures to avoid serious accidents. Due to the multilayer characteristic of the viscoelastic sandwich structure, the vibration response signal of such structures is nonlinear and nonstationary. Furthermore, the looseness condition feature signal contained in the vibration response signal is very puny. Condition feature extraction has become a challenging task in the looseness condition detection of viscoelastic sandwich structures. Therefore, a novel method called dual-tree complex wavelet packet-based deep autoencoder network is proposed for this task. First, the vibration response signal of the viscoelastic sandwich structure is decomposed by dual-tree complex wavelet packet transform and the sub-band signals which contain rich energy are extracted. Then, the energies of the extracted sub-band signals are calculated to form a feature set. Finally, a deep autoencoder network is established to fuse the feature set, and the fused feature is viewed as the detection index to detect the looseness condition of the viscoelastic sandwich structure. The proposed method is applied to the connecting bolt looseness condition detection of the viscoelastic sandwich structure to validate its effectiveness. Compared with the detection method based on dual-tree complex wavelet packet transform and energy and the detection method based on dual-tree complex wavelet packet transform and permutation entropy, the results indicate that the effectiveness of the proposed method in this article is more superior to that of the other two methods.

2019 ◽  
Vol 19 (1) ◽  
pp. 156-172 ◽  
Author(s):  
Jinxiu Qu ◽  
Changquan Shi ◽  
Feng Ding ◽  
Wenjuan Wang

A viscoelastic sandwich structure is widely used in mechanical equipment, but therein viscoelastic layers inevitably suffer from aging which changes the dynamic characteristics of the structure and influences the whole performance of the equipment. Hence, accurate and automatic aging state recognition of the viscoelastic sandwich structure is very significant to monitor structural health state and guarantee equipment operating reliably. To fulfill this task, by analyzing the sensor-based vibration response signals, a novel aging state recognition approach of the viscoelastic sandwich structure based on permutation entropy of dual-tree complex wavelet packet transform and generalized Chebyshev support vector machine is proposed in this article. To extract effective aging feature information, the measured nonlinear and non-stationary vibration response signals are processed by dual-tree complex wavelet packet transform, and multiple permutation entropy features are extracted from the frequency-band signals to reflect structural aging states. For accurate and automatic aging state classification, generalized Chebyshev kernel is introduced, and multi-class generalized Chebyshev support vector machine is developed to classify structural aging states. In order to demonstrate the effectiveness of the proposed method, a typical viscoelastic sandwich structure is designed and fabricated, and various structural aging states are created through the hot oxygen–accelerated aging of viscoelastic layers. The testing results show that the proposed method can recognize the different structural aging states accurately and automatically. In addition, the superiority of dual-tree complex wavelet packet transform in processing vibration response signals and the performance of generalized Chebyshev support vector machine in classifying structural aging states are respectively validated by comparing with the commonly used methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Wuqiang Liu ◽  
Xiaoqiang Yang ◽  
Shen Jinxing

The health condition of rolling bearings, as a widely used part in rotating machineries, directly influences the working efficiency of the equipment. Consequently, timely detection and judgment of the current working status of the bearing is the key to improving productivity. This paper proposes an integrated fault identification technology for rolling bearings, which contains two parts: the fault predetection and the fault recognition. In the part of fault predetection, the threshold based on amplitude-aware permutation entropy (AAPE) is defined to judge whether the bearing currently has a fault. If there is a fault in the bearing, the fault feature is adequately extracted using the feature extraction method combined with dual-tree complex wavelet packet transform (DTCWPT) and generalized composite multiscale amplitude-aware permutation entropy (GCMAAPE). Firstly, the method decomposes the fault vibration signal into a set of subband components through the DTCWPT with good time-frequency decomposing capability. Secondly, the GCMAAPE values of each subband component are computed to generate the initial candidate feature. Next, a low-dimensional feature sample is established using the t-distributed stochastic neighbor embedding (t-SNE) with good nonlinear dimensionality reduction performance to choose sensitive features from the initial high-dimensional features. Afterwards, the featured specimen representing fault information is fed into the deep belief network (DBN) model to judge the fault type. In the end, the superiority of the proposed solution is verified by analyzing the collected experimental data. Detection and classification experiments indicate that the proposed solution can not only accurately detect whether there is a fault but also effectively determine the fault type of the bearing. Besides, this solution can judge the different faults more accurately compared with other ordinary methods.


2021 ◽  
pp. 147592172110575
Author(s):  
Jinxiu Qu ◽  
Changquan Shi ◽  
Jinzhu Guo ◽  
Xiaowei Shi ◽  
Jiaqi Huang ◽  
...  

Viscoelastic sandwich structure plays an important role in mechanical equipment, nevertheless viscoelastic material inevitably suffers from gradual aging. For guaranteeing the operation safety of mechanical equipment, it is urgent to perform the aging state detection of viscoelastic sandwich structure with vibration response signal analysis. However, the structural vibration response signal is non-stationary and its variation caused by the structural aging state change is very puny, and the abnormal state samples is lacking. The vibration-based structural aging state detection has become a challenging task. Therefore, a novel method based on redundant second generation wavelet packet transform (RSGWPT) and fuzzy support vector data description (FSVDD) is proposed for this task. For extracting sensitive aging feature information, RSGWPT is introduced to process the structural vibration response signal, and multiple energy features are extracted from the frequency-band signals to reflect structural aging state change. For accurate and automatic aging state identification, by fusing fuzzy theory, FSVDD only uses the normal state samples for training and can identify the abnormal severity degrees is developed to identify the structural aging states. The proposed method is applied on a viscoelastic sandwich structure to validate its effectiveness, and different structural aging states are created through the accelerated aging of viscoelastic material. The analysis results show the outstanding performance of the proposed method.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Guiji Tang ◽  
Xiaolong Wang ◽  
Yuling He

A novel method of fault diagnosis for rolling bearing, which combines the dual tree complex wavelet packet transform (DTCWPT), the improved multiscale permutation entropy (IMPE), and the linear local tangent space alignment (LLTSA) with the extreme learning machine (ELM), is put forward in this paper. In this method, in order to effectively discover the underlying feature information, DTCWPT, which has the attractive properties as nearly shift invariance and reduced aliasing, is firstly utilized to decompose the original signal into a set of subband signals. Then, IMPE, which is designed to reduce the variability of entropy measures, is applied to characterize the properties of each obtained subband signal at different scales. Furthermore, the feature vectors are constructed by combining IMPE of each subband signal. After the feature vectors construction, LLTSA is employed to compress the high dimensional vectors of the training and the testing samples into the low dimensional vectors with better distinguishability. Finally, the ELM classifier is used to automatically accomplish the condition identification with the low dimensional feature vectors. The experimental data analysis results validate the effectiveness of the presented diagnosis method and demonstrate that this method can be applied to distinguish the different fault types and fault degrees of rolling bearings.


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 396 ◽  
Author(s):  
Zhendong Yin ◽  
Li Wang ◽  
Yaojia Zhang ◽  
Yang Gao

Arc faults are one of the important causes of electric fires. In order to solve the problem of randomness, diversity, the concealment of series arc faults and to improve the detection accuracy, a novel arc fault detection method integrated random forest (RF), improved multi-scale permutation entropy (IMPE) and wavelet packet transform (WPT) are designed. Firstly, singular value decomposition (SVD) was applied to filter the current signal and then the high-dimensional fault features were constructed by extracting IMPE, the wavelet packet energy and the wavelet packet energy-entropy. Afterward, the high-dimensional fault features were employed to train the RF to realize the arc fault detection of different load types and the experimental results verify the effectiveness of the arc fault detection method designed in this paper. Finally, the comparative experiments demonstrates that the RF shows better performance in arc fault detection compared to the back-propagation neural network (BPNN) and least squares support vector machines (LSSVM), and that the experiments of transient events indicate that RF is able to effectively avoid incorrectly detecting different load types during the start operations and stop operations.


Sign in / Sign up

Export Citation Format

Share Document