Fatigue damage detection from imbalanced inspection data of Lamb wave

2021 ◽  
pp. 147592172110152
Author(s):  
Jingjing He ◽  
Ziwei Fang ◽  
Jie Liu ◽  
Fei Gao ◽  
Jing Lin

The core of structural health monitoring is to provide a real-time monitoring, inspection, and damage detection of structures. As one of the most promising technology to structural health monitoring, the Lamb wave method has attracted interest because it is sensitive to small-scale damage with a long detection range. However, in many real-world structural health monitoring applications, the nature of the problem implies structures work under normal condition in most of its operating phases; therefore, classes of data collected are not equally represented. The predictive capability of damage detection algorithms may significantly be impaired by class imbalance. This article presents a damage detection method using imbalanced inspection data which is collected through Lamb wave detection. Aiming at maximizing detection accuracy, an improved synthetic minority over-sampling technique using three-point triangle (triangle synthetic minority over-sampling technique) is proposed to conduct the over-sampling procedure and increase the number of minority samples. The iterative-partitioning filter is employed to remove the noisy examples which may be introduced by triangle synthetic minority over-sampling technique. Three conventional classification methods, namely, support vector machine, decision tree, and k-nearest neighbor, are used to perform the damage detection. A fatigue crack detection test using Lamb wave is performed to demonstrate the overall procedure of the proposed method. Three damage sensitive features, namely, normalized amplitude, correlation coefficient, and normalized energy, are extracted from signals as datasets. A cross-validation is performed to verify the performance of the proposed method for crack size identification.

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1835 ◽  
Author(s):  
Yolanda Vidal ◽  
Gabriela Aquino ◽  
Francesc Pozo ◽  
José Eligio Moisés Gutiérrez-Arias

Structural health monitoring for offshore wind turbines is imperative. Offshore wind energy is progressively attained at greater water depths, beyond 30 m, where jacket foundations are presently the best solution to cope with the harsh environment (extreme sites with poor soil conditions). Structural integrity is of key importance in these underwater structures. In this work, a methodology for the diagnosis of structural damage in jacket-type foundations is stated. The method is based on the criterion that any damage or structural change produces variations in the vibrational response of the structure. Most studies in this area are, primarily, focused on the case of measurable input excitation and vibration response signals. Nevertheless, in this paper it is assumed that the only available excitation, the wind, is not measurable. Therefore, using vibration-response-only accelerometer information, a data-driven approach is developed following the next steps: (i) the wind is simulated as a Gaussian white noise and the accelerometer data are collected; (ii) the data are pre-processed using group-reshape and column-scaling; (iii) principal component analysis is used for both linear dimensionality reduction and feature extraction; finally, (iv) two different machine-learning algorithms, k nearest neighbor (k-NN) and quadratic-kernel support vector machine (SVM), are tested as classifiers. The overall accuracy is estimated by 5-fold cross-validation. The proposed approach is experimentally validated in a laboratory small-scale structure. The results manifest the reliability of the stated fault diagnosis method being the best performance given by the SVM classifier.


2016 ◽  
Vol 16 (04) ◽  
pp. 1640025 ◽  
Author(s):  
Wensong Zhou ◽  
Shunlong Li ◽  
Hui Li

A full-scale bridge benchmark problem was issued by the Center of Structural Monitoring and Control at the Harbin Institute of Technology. The data used in this problem were collected by an in situ structural health monitoring system implemented into a full-scale cable-stayed bridge before and after the bridge was damaged, which is very rare in structural health monitoring field. This benchmark problem will help to verify and/or make comparison of the condition assessment and the damage detection methods, which are usually validated by numerical simulation and/or laboratory testing of small-scale structures with assumed deterioration models and artificial damage. With respect to damage detection of girder, one of the benchmark problems, using the monitored and field testing acceleration data, this paper describes a damage detection method, based on a residual generated from a subspace-based covariance-driven identification method, to detect the damage, and give relative quantitative damage indexes. This method was applied on both two parts of the given benchmark problem, and then detailed discussions and results on this problem are reported in this paper.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Luke Bornn ◽  
Charles R. Farrar ◽  
Gyuhae Park ◽  
Kevin Farinholt

The use of statistical methods for anomaly detection has become of interest to researchers in many subject areas. Structural health monitoring in particular has benefited from the versatility of statistical damage-detection techniques. We propose modeling structural vibration sensor output data using nonlinear time-series models. We demonstrate the improved performance of these models over currently used linear models. Whereas existing methods typically use a single sensor’s output for damage detection, we create a combined sensor analysis to maximize the efficiency of damage detection. From this combined analysis we may also identify the individual sensors that are most influenced by structural damage.


2017 ◽  
Vol 17 (4) ◽  
pp. 763-776 ◽  
Author(s):  
Dongyue Gao ◽  
Zhanjun Wu ◽  
Lei Yang ◽  
Yuebin Zheng

Impedance of a sensor is sensitivity to small structural damage which surrounds the sensor. Lamb wave propagation provides higher damage detection efficiency in the range of large area. Both methods have been widely developed for structural health monitoring. This article presents integrated impedance and Lamb wave–based structural health monitoring strategy for composite pressure vessels. The output of the presented structural health monitoring strategy includes distribution and classification of damage and health condition of sensor network under varying internal pressure loading environments. In the strategy, a novel damage index adjusting method for Lamb wave damage detection is developed based on the signal features of real and imaginary parts of the sensor impedance. First, the potential structural damage is pre-warned by monitoring the impedance variation of the piezoelectric transducer sensor network. Then, the health condition of sensor network under the working condition is assessed by impedance-based self-diagnosis method; subsequently, the Lamb wave damage index is adjusted based on the result of sensor self-diagnosis. Finally, on the basis of sensor self-diagnosis and damage index adjustment result, damage identification and classification are performed. Practical efficacy of the structural health monitoring approach is tested by the damage monitoring experiment on loaded composite structure.


2021 ◽  
Vol 11 (12) ◽  
pp. 5727
Author(s):  
Sifat Muin ◽  
Khalid M. Mosalam

Machine learning (ML)-aided structural health monitoring (SHM) can rapidly evaluate the safety and integrity of the aging infrastructure following an earthquake. The conventional damage features used in ML-based SHM methodologies face the curse of dimensionality. This paper introduces low dimensional, namely, cumulative absolute velocity (CAV)-based features, to enable the use of ML for rapid damage assessment. A computer experiment is performed to identify the appropriate features and the ML algorithm using data from a simulated single-degree-of-freedom system. A comparative analysis of five ML models (logistic regression (LR), ordinal logistic regression (OLR), artificial neural networks with 10 and 100 neurons (ANN10 and ANN100), and support vector machines (SVM)) is performed. Two test sets were used where Set-1 originated from the same distribution as the training set and Set-2 came from a different distribution. The results showed that the combination of the CAV and the relative CAV with respect to the linear response, i.e., RCAV, performed the best among the different feature combinations. Among the ML models, OLR showed good generalization capabilities when compared to SVM and ANN models. Subsequently, OLR is successfully applied to assess the damage of two numerical multi-degree of freedom (MDOF) models and an instrumented building with CAV and RCAV as features. For the MDOF models, the damage state was identified with accuracy ranging from 84% to 97% and the damage location was identified with accuracy ranging from 93% to 97.5%. The features and the OLR models successfully captured the damage information for the instrumented structure as well. The proposed methodology is capable of ensuring rapid decision-making and improving community resiliency.


2019 ◽  
Vol 55 (7) ◽  
pp. 1-6
Author(s):  
Zhaoyuan Leong ◽  
William Holmes ◽  
James Clarke ◽  
Akshay Padki ◽  
Simon Hayes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document