Design parameters for electrospun biodegradable vascular grafts

2016 ◽  
Vol 47 (8) ◽  
pp. 2205-2227 ◽  
Author(s):  
Ipek Yalcin Enis ◽  
Telem Gok Sadikoglu

The inadequacies of the currently used small diameter, non-biodegradable synthetic grafts prompt researchers to focus on the design parameters of vascular grafts. Since the purpose is to mimic the native vessel as far as possible, the design parameters are mainly determined by the layout of cell types and proteins in the layers of the vessels and the nano and micro structure of their environments. In consequence of this, the complex structure of native vessels has become a broad source of inspiration for researchers. Electrospun fibrous scaffolds with their well accepted advantages are promising candidates and researchers are able to work with various materials with differing forms, structures, dimensions, and surface modifications according to their requirements. On the other hand, both synthetic biodegradable polymers and natural proteins are the key materials that enable researchers to take one step closer to achieving the goal of creating an autologous vessel at some time after implantation. When the priority and significance of the need for small diameter vascular grafts is considered, the research field to improve vascular grafts is worthy of note. In this regard, the objective of this review is to discuss comparatively the current studies on the design parameters of electrospun vascular grafts, defined as fiber orientation, fiber diameter, pore size and porosity, wall thickness, and material selection, based on the structure of native blood vessels, the requirements of vascular grafts and electrospinning technology, and the advantages of electrospun vascular grafts, to give an outlook for further studies.

Author(s):  
Yuen Ting Lam ◽  
Richard P. Tan ◽  
Praveesuda L. Michael ◽  
Kieran Lau ◽  
Nianji Yang ◽  
...  

The rising incidence of cardiovascular disease has increased the demand for small diameter (<6 mm) synthetic vascular grafts for use in bypass surgery. Clinically available synthetic grafts (polyethylene terephthalate and expanded polytetrafluorethylene) are incredibly strong, but also highly hydrophobic and inelastic, leading to high rates of failure when used for small diameter bypass. The poor clinical outcomes of commercial synthetic grafts in this setting have driven significant research in search of new materials that retain favourable mechanical properties but offer improved biocompatibility. Over the last several decades, silk fibroin derived from Bombyx mori silkworms has emerged as a promising biomaterial for use in vascular applications. Progress has been driven by advances in silk manufacturing practices which have allowed unprecedented control over silk strength, architecture, and the ensuing biological response. Silk can now be manufactured to mimic the mechanical properties of native arteries, rapidly recover the native endothelial cell layer lining vessels, and direct positive vascular remodelling through the regulation of local inflammatory responses. This review summarises the advances in silk purification, processing and functionalisation which have allowed the production of robust vascular grafts with promise for future clinical application.


Author(s):  
Benjamin J. Snyder ◽  
Joe Bussard ◽  
Jim Dolak ◽  
Tim Weiser

This project analyzed and redesigned the various components of a previously designed sisal decorticator prototype. The sisal plant is easily grown in the arid regions of Kenya and its fiber has widespread industrial and consumer applications. Competition from Brazilian and Chinese sisal growers has made it difficult for small-scale Kenyan sisal farmers to yield a profit. Decorticator machines strip the usable fiber from the sisal leaves. A strong market exists in Kenya and beyond for an affordable and capable decortication device. Based on interaction with University of Nairobi students and faculty, design parameters were assessed and adapted to create a working prototype to meet these needs. Throughout the design process, affordability, energy consumption, transportability, reliability, on-site material and assembly constraints were taken into account. The designs chosen accomplished the project requirements by minimizing cost through material selection and ease of manufacture, and provided adjustable parameters in order to facilitate decortication quality testing. A vertical feed, small diameter decorticator with steel blades transportable via a steel frame with two wheels was determined to be the optimal solution. Testing with actual sisal and variable components enabled quality to be assessed as well as ensured that the designed prototype operated correctly and safely.


2021 ◽  
Author(s):  
◽  
William King, III ◽  

The ideal “off the shelf” tissue engineering, small-diameter (< 6 mm inner diameter (ID)) vascular graft hinges on designing a template that facilitates transmural ingrowth of capillaries to regenerate an endothelized neointimal surface. Previous traditionally electrospun (TES) approaches to create bioresorbable vascular grafts lack the pore sizes required to facilitate transmural capillary ingrowth required for successful in situ neovascular regeneration. Therefore, the ability to create scaffolds with program-specific architectures independent of fiber diameter via the relatively recent sub-technique of near-field electrospinning (NFES) represents a promising solution to create tissue engineering vascular grafts. These programmed large pore sizes are anticipated to promote in situ regeneration and improve the outcomes as well as the quality of life of patients with arterial disease. In this dissertation, we manufactured via NFES as well as characterized biodegradable polydioxanone (PDO) small-diameter vascular grafts. Chapter 1 introduces the need for off-the-shelf, small-diameter vascular grafts to facilitate in situ regeneration, the process and pore size limitations of TES vascular grafts, and the promising use of NFES to develop precisely tailored PDO vascular grafts. Chapter 2 describes the process of NFES and details the current progress in NFES of biomedical polymers as well as the major limitations that exist in the field. Chapters 3, 4, and 5 contain primary research exploring the creation of an NFES vascular graft scaffold and characterizing the mechanical as well as biological response of these scaffolds. Specifically, in Chapter 3 we demonstrate a NFES apparatus designed around a commercial 3D printer to write PDO microfibers. The processing parameters of air gap, polymer concentration, translational velocity, needle gauge, and applied voltage were characterized for their effects on PDO fiber diameter. The processing parameters of polymer concentration and translational fiber deposition velocity were further characterized for their effects on fiber crystallinity and individual fiber uniformity. The precision of fiber stacking via a 3D printer was qualitatively evaluated to inform the creation of 3D scaffolds to guide the alignment of human gingival fibroblasts. It was found that fiber diameters correlate positively with polymer concentration, applied voltage, and needle gauge and inversely correlate with translational velocity and air gap distance. Individual fiber diameter variability decreases, and crystallinity increases with increasing translational fiber deposition velocity. These data resulted in the creation of tailored PDO 3D scaffolds which guided the alignment of primary human fibroblast cells. Together, these results suggest that NFES of PDO can be scaled to create precise geometries with tailored fiber diameters for vascular graft scaffolds. In Chapter 4, we demonstrated a NFES device to semi-stably write PDO microfibers. The polymer spinneret was programmed to translate in a stacking grid pattern, which resulted in a scaffold with highly aligned grid fibers that were intercalated with low density, random fibers. As a consequence of this random switching process, increasing the grid dimensions resulted in both a lower density of fibers in the center of each grid in the scaffold as well as a lower density of “rebar-like” stacked fibers per unit area. These hybrid architecture scaffolds resulted in tailorable as well as greater surface pore sizes as given by scanning electron micrographs and effective object permeability as indicated by fluorescent microsphere filtration compared to TES scaffolds of the same fiber diameter. Furthermore, these programmable scaffolds resulted in tailorability in the characterized mechanical properties ultimate tensile strength, percent elongation, yield stress, yield elongation, and Young’s modulus independent of fiber diameter compared to the static TES scaffold characterization. Lastly, the innate immune response of neutrophil extracellular traps (NETs) was further attenuated on NFES scaffolds compared to TES scaffolds. These results suggest that this novel NFES scaffold architecture of PDO can be highly tailored as a function of programming for small diameter vascular graft scaffolds. In Chapter 5, we created two types of NFES PDO architectures, as small-diameter vascular graft scaffolds. The first architecture type consisted of a 200 x 200 µm and 500 x 500 µm grid geometry with random fiber infill produced from one set of processing parameters, while the second architecture consisted of aligned fibers written in a 45°/45° and 20°/70° offset from the long axis, both on a 4 mm diameter cylindrical mandrel. These vascular graft scaffolds were characterized for their effective object transit pore size, mechanical properties, and platelet-material interactions compared to TES scaffolds and Gore-Tex® vascular grafts. It was found that effective pore size, given by 9.9 and 97 µm microsphere filtration through the scaffold wall for NFES grafts, was significantly more permeable compared to TES grafts and Gore-Tex® vascular grafts. Furthermore, the characterized mechanical properties of ultimate tensile strength, percent elongation, suture retention, burst pressure, and Young’s modulus were all tailorable for NFES grafts, independent of fiber diameter, compared to TES graft characterization. Lastly, platelet adhesion was attenuated on large pore size NFES grafts compared to the TES grafts which approximated the low level of platelet adhesion measured on Gore-Tex® grafts, with all grafts showing minimal platelet activation given by P-selectin surface expression. Together, these results suggest a highly tailorable process for the creation of the next generation of small-diameter vascular grafts. Lastly, Chapter 6 expounds future considerations for continuing research in NFES technology, NFES for general tissue engineering, and NFES for vascular tissue engineering as well as gives final conclusions. Together, the finding of this dissertation indicated that NFES vascular grafts result in seamless, small diameter tubular scaffolds with programmable pore sizes on the magnitude anticipated to facilitate transmural endothelialization as well as programmable mechanical properties that approximate native values. Thus, this work represents the next step in developing bioinstructive designed scaffolds to facilitate in situ vascular regeneration to improve the outcomes as well as the quality of life of patients with arterial vascular disease.


RSC Advances ◽  
2017 ◽  
Vol 7 (30) ◽  
pp. 18775-18784 ◽  
Author(s):  
Jingchen Gao ◽  
Yaping Wang ◽  
Siyuan Chen ◽  
Di Tang ◽  
Li Jiang ◽  
...  

Vascular grafts are significantly needed in peripheral vascular surgery; however, small diameter grafts are not always available, and synthetic grafts perform poorly because of acute thrombosis and neointimal proliferation after implantation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1952
Author(s):  
Max Wacker ◽  
Jan Riedel ◽  
Heike Walles ◽  
Maximilian Scherner ◽  
George Awad ◽  
...  

In this study, we contrast the impacts of surface coating bacterial nanocellulose small-diameter vascular grafts (BNC-SDVGs) with human albumin, fibronectin, or heparin–chitosan upon endothelialization with human saphenous vein endothelial cells (VEC) or endothelial progenitor cells (EPC) in vitro. In one scenario, coated grafts were cut into 2D circular patches for static colonization of a defined inner surface area; in another scenario, they were mounted on a customized bioreactor and subsequently perfused for cell seeding. We evaluated the colonization by emerging metabolic activity and the preservation of endothelial functionality by water soluble tetrazolium salts (WST-1), acetylated low-density lipoprotein (AcLDL) uptake assays, and immune fluorescence staining. Uncoated BNC scaffolds served as controls. The fibronectin coating significantly promoted adhesion and growth of VECs and EPCs, while albumin only promoted adhesion of VECs, but here, the cells were functionally impaired as indicated by missing AcLDL uptake. The heparin–chitosan coating led to significantly improved adhesion of EPCs, but not VECs. In summary, both fibronectin and heparin–chitosan coatings could beneficially impact the endothelialization of BNC-SDVGs and might therefore represent promising approaches to help improve the longevity and reduce the thrombogenicity of BNC-SDVGs in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bagrat Grigoryan ◽  
Daniel W. Sazer ◽  
Amanda Avila ◽  
Jacob L. Albritton ◽  
Aparna Padhye ◽  
...  

AbstractAs a 3D bioprinting technique, hydrogel stereolithography has historically been limited in its ability to capture the spatial heterogeneity that permeates mammalian tissues and dictates structure–function relationships. This limitation stems directly from the difficulty of preventing unwanted material mixing when switching between different liquid bioinks. Accordingly, we present the development, characterization, and application of a multi-material stereolithography bioprinter that provides controlled material selection, yields precise regional feature alignment, and minimizes bioink mixing. Fluorescent tracers were first used to highlight the broad design freedoms afforded by this fabrication strategy, complemented by morphometric image analysis to validate architectural fidelity. To evaluate the bioactivity of printed gels, 344SQ lung adenocarcinoma cells were printed in a 3D core/shell architecture. These cells exhibited native phenotypic behavior as evidenced by apparent proliferation and formation of spherical multicellular aggregates. Cells were also printed as pre-formed multicellular aggregates, which appropriately developed invasive protrusions in response to hTGF-β1. Finally, we constructed a simplified model of intratumoral heterogeneity with two separate sub-populations of 344SQ cells, which together grew over 14 days to form a dense regional interface. Together, these studies highlight the potential of multi-material stereolithography to probe heterotypic interactions between distinct cell types in tissue-specific microenvironments.


2020 ◽  
Vol 26 (23-24) ◽  
pp. 1388-1401
Author(s):  
Megan Kimicata ◽  
Prateek Swamykumar ◽  
John P. Fisher

2006 ◽  
Vol 54 (2) ◽  
pp. 102-107 ◽  
Author(s):  
H. Gulbins ◽  
A. Pritisanac ◽  
M. Dauner ◽  
R. Petzold ◽  
A. Goldemund ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 713
Author(s):  
Shu Fang ◽  
Ditte Gry Ellman ◽  
Ditte Caroline Andersen

To date, a wide range of materials, from synthetic to natural or a mixture of these, has been explored, modified, and examined as small-diameter tissue-engineered vascular grafts (SD-TEVGs) for tissue regeneration either in vitro or in vivo. However, very limited success has been achieved due to mechanical failure, thrombogenicity or intimal hyperplasia, and improvements of the SD-TEVG design are thus required. Here, in vivo studies investigating novel and relative long (10 times of the inner diameter) SD-TEVGs in large animal models and humans are identified and discussed, with emphasis on graft outcome based on model- and graft-related conditions. Only a few types of synthetic polymer-based SD-TEVGs have been evaluated in large-animal models and reflect limited success. However, some polymers, such as polycaprolactone (PCL), show favorable biocompatibility and potential to be further modified and improved in the form of hybrid grafts. Natural polymer- and cell-secreted extracellular matrix (ECM)-based SD-TEVGs tested in large animals still fail due to a weak strength or thrombogenicity. Similarly, native ECM-based SD-TEVGs and in-vitro-developed hybrid SD-TEVGs that contain xenogeneic molecules or matrix seem related to a harmful graft outcome. In contrast, allogeneic native ECM-based SD-TEVGs, in-vitro-developed hybrid SD-TEVGs with allogeneic banked human cells or isolated autologous stem cells, and in-body tissue architecture (IBTA)-based SD-TEVGs seem to be promising for the future, since they are suitable in dimension, mechanical strength, biocompatibility, and availability.


Sign in / Sign up

Export Citation Format

Share Document