Dynamic mechanical and thermogravimetric analysis of PTFE blended tailor-made textile woven basalt–vinyl ester composites

2016 ◽  
Vol 47 (6) ◽  
pp. 1226-1240 ◽  
Author(s):  
Karthikeyan Subramanian ◽  
Rajini Nagarajan ◽  
Subramaniam Saravanasankar ◽  
Jacob Sukumaran ◽  
Patrick De Baets

In this work, the authors prepared basalt–vinyl ester tailor-made green composites with uncoated and polytetrafluroethylene coated basalt woven fabric. These composites were subjected to dynamic composites-made mechanical analysis and thermo gravimetric analysis. Results revealed that a significant improvement of 18%, 14% and 13% was observed for storage and loss modulus and damping properties of polytetrafluroethylene-coated composite at low temperature region. The thermo gravimetric analysis results indicated a three-stage degradation for the polytetrafluroethylene-filled composites. Based on the acceptability from the literature, the tribo-test was performed only on the polytetrafluroethylene-coated composite for the selected PV limit of 400 MPa-mm/s (10 KN and 50 mm/s) in a flat-on-flat configuration. It was found that the influence of polytetrafluroethylene filler on the static and dynamic coefficient of friction and specific wear rate of the composite was more pronounced at dry wear test condition and it was found as 0.22, 0.12, and 4.87484 E-09, respectively. However, the results of improved storage and loss modulus and damping manifested negative correlation with the friction characteristics in the glassy region. Further, the SEM-coupled EDX spectral analysis was performed to understand the formation of transfer layer in counter surface. This polytetrafluroethylene blended composite is to be considered as an alternative to the bearing materials in offshore application.

2011 ◽  
Vol 374-377 ◽  
pp. 1426-1429
Author(s):  
Xiao Meng Guo ◽  
Jian Qiang Li ◽  
Xian Sen Zeng ◽  
De Dao Hong

In this study, the thermal properties of a kind of new geotextile materials, so called controlled permeable formwork (CPF), were studied. Thermo-gravimetric analysis showed that the weight of CPF didn’t change much between 0~350 °C. Dynamic mechanical analysis showed that the storage modulus of CPF reduced from 25 MPa to around 10 MPa when the temperature rose to above 100 °C. The strength of sample decreased slightly with the increase of the temperature. The breaking elongation changed slightly with a maximum at 80 °C. The CPF showed excellent thermal stability and was suitable for general use in construction work.


2018 ◽  
Vol 1148 ◽  
pp. 48-60
Author(s):  
Pala Srinivas Reddy ◽  
T. Victor Babu ◽  
S. Santosh Kumar

Fiber reinforced plastics have been widely used for manufacturing aircrafts and spacecrafts structural parts because of their high mechanical, physical properties. These are used in manufacturing of structural composites, printed circuit boards and in a wide range of special-purpose products which are included in medical field as well. Within reinforcing materials chopped strand mats are the most frequently used in structural constructions because of their properties such as viscoelasticity, strength and high thermal stability. The present work focuses on mechanical and thermal properties of chopped strand mat reinforced with polyester resin and filler as graphite powder (which has high melting point) in different weight fractions. Evaluation of material properties is tested using Thermo-Gravimetric Analysis and Dynamic Mechanical analysis at a standard temperature ranging between 20°C - 460°C and evaluated. The results show that inclusion of graphite powder in chopped strand mat exhibit better enhancement in results when compared.


Author(s):  
Shaik Zainuddin ◽  
Mahesh Hosur ◽  
Harish Rao ◽  
Rajib Barua ◽  
Shaik Jeelani ◽  
...  

In this work, SC-15 epoxy resin was modified using 0.1–0.3 wt. % of non-functionalized and functionalized multi-walled carbon nanotubes (MWCNTs) using conventional and solvent based methods. A high-intensity ultrasonic liquid processor was used to disperse MWCNTs in solvent and to obtain a homogeneous molecular mixture of epoxy resin and MWCNTs. Viscosity, dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA), tensile and flexure tests were performed on unfilled and 0.1–0.3 wt. % MWCNTs filled SC-15 epoxy. Preliminary results indicate increase in viscosity with increase in MWCNTs wt. % loading and 0.2 wt. % MWCNTs epoxy samples showed the highest improvement in tensile and flexural properties as compared to the neat system. DMA studies also revealed that 0.2 wt. % doped system exhibit the highest storage modulus and Tg as compared to neat and other loading percentages. TGA results show that amino functionalized MWCNTs samples are more thermally stable.


2015 ◽  
Vol 1758 ◽  
Author(s):  
Song Wang ◽  
Amy Corcoran ◽  
Victoria Leybova ◽  
Edward L. Dreizin

ABSTRACTRecent research has demonstrated that ternary aluminum-boron-iodine (Al-B-I2) materials prepared by mechanical milling are effective in generating biocidal combustion products. Such reactive materials are of interest for the munitions aimed to defeat stockpiles of biological weapons. In this research, ternary Mg∙B∙I2 composites were synthesized using two-stage milling. The first stage consisted of a binary B∙I2 powder prepared by mechanical milling, followed by addition of magnesium for iodine stabilization. Specific compositions for each ternary material were varied. Stability of the samples was assessed by their heating in argon at a constant rate using Thermo Gravimetric Analysis (TGA) and observing weight loss. Oxidation of the prepared powders was also studied by TGA. Ternary Mg∙B∙I2 composite powders prepared by two-stage milling were more stable than any of the previously prepared iodine-bearing materials with the same concentration of iodine (20 wt %). Particle size distributions were measured using low-angle laser light scattering. Powders were ignited using in an air-acetylene flame and in a constant volume explosion apparatus. Particle burn times and temperatures were measured optically. Substantially longer burn times and lower temperatures were observed for the prepared materials compared to the reference pure Mg powder.


2013 ◽  
Vol 284-287 ◽  
pp. 245-249
Author(s):  
Ming Ming Yu ◽  
Yuan Yuan Cui ◽  
Xiao Ma ◽  
Ai Jun Li ◽  
Rui Cheng Bai ◽  
...  

To study the relationship between the molecular main chain structure and the properties of amine based tetra-functional epoxy resins, especially for the thermal stabilities and the mechanical properties, N,N,N',N'-Tetraglycidyl-2,2-Bis[4-(4-aminophenoxy)phenyl]propane (TGBAPP) and N,N,N',N'-Tetraglycidyl-4,4'-diamino diphenyl ether (TGDDE) were cured with Methyl nadic anhydride (MNA). The thermal behavior of the cured epoxy resins were studied with the thermo-gravimetric analysis (TGA), and the glass transition temperature (Tg) were determined with the Dynamic Mechanical Analysis (DMA). Additionally, the mechanical properties of them were tested. The results indicated that the cured epoxy resin based on TGBAPP had better thermal stabilities and toughness.


2008 ◽  
Vol 59 (7) ◽  
Author(s):  
Madalina Angelusiu ◽  
Maria Negoiu ◽  
Stefania-Felicia Barbuceanu ◽  
Tudor Rosu

The paper presents the synthesis and characterization of Cu(II), Co(II), Ni(II), Cd(II), Zn(II) and Hg(II) complexes with N1-[4-(4-bromo-phenylsulfonyl)-benzoyl]-N4-(4-methoxyphenyl)-thiosemicarbazide. The new compounds were characterized by IR, EPR, electronic spectroscopy, magnetic moments, thermo-gravimetric analysis and elemental analysis.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1728
Author(s):  
Peng Wen ◽  
Teng-Gen Hu ◽  
Yan Wen ◽  
Ke-Er Li ◽  
Wei-Peng Qiu ◽  
...  

An ethyl acetate extract from of Nervilia fordii (NFE) with considerable suppression activity on lipid peroxidation (LPO) was first obtained with total phenolic and flavonoid contents and anti-LPO activity (IC50) of 86.67 ± 2.5 mg GAE/g sample, 334.56 ± 4.7 mg RE/g extract and 0.307 mg/mL, respectively. In order to improve its stability and expand its application in antioxidant packaging, the nano-encapsulation of NFE within poly(vinyl alcohol) (PVA) and polyvinyl(pyrrolidone) (PVP) bio-composite film was then successfully developed using electrospinning. SEM analysis revealed that the NFE-loaded fibers exhibited similar morphology to the neat PVA/PVP fibers with a bead-free and smooth morphology. The encapsulation efficiency of NFE was higher than 90% and the encapsulated NFE still retained its antioxidant capacity. Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) analysis confirmed the successful encapsulation of NFE into fibers and their compatibility, and the thermal stability of which was also improved due to the intermolecular interaction demonstrated by thermo gravimetric analysis (TGA). The ability to preserve the fish oil’s oxidation and extend its shelf-life was also demonstrated, suggesting the obtained PVA/PVP/NFE fiber mat has the potential as a promising antioxidant food packaging material.


2011 ◽  
Vol 135-136 ◽  
pp. 1057-1059
Author(s):  
Heng Tao Zhou ◽  
Yong Wei

With a thermo gravimetric analysis apparatus combustion characteristics experiments of coal residue cornstalk and mixtures of them were done at 20 C/min heating rate. Then the combustion characteristic Parameters were obtained by above experiments. The c combustion activation energies were acquired by kinetics analysis. The results show those: the ignition characteristic and synthesis combustion characteristic of coal residue are bad. The ignition characteristic and synthesis combustion characteristic of cornstalk are better. The combustion characteristics of the mixture of coal residue and cornstalk are determined by mixing ratio. The ratio of cornstalk is more and the synthesis combustion characteristic is better.


Sign in / Sign up

Export Citation Format

Share Document