Experimental investigation and optimization of abrasive water jet cutting parameters for the improvement of cut quality in carbon fiber reinforced plastic laminates

2017 ◽  
Vol 48 (1) ◽  
pp. 178-200 ◽  
Author(s):  
B Jagadeesh ◽  
P Dinesh Babu ◽  
M Nalla Mohamed ◽  
P Marimuthu

The utilization of composite materials has nowadays increased in aerospace applications due to their less weight and superior mechanical properties. Nevertheless, machining of composite materials without damage is quite challenging through conventional system due to their inherent heterogeneity, anisotropy, and thermal sensitivity. To overcome this problem, abrasive water jet machining process can be employed. It is a non-conventional machining processes with high accuracy, high flexibility and with no heat generation. However, there are more challenges in cutting fiber reinforced plastics with this technique. Hence, this work deals with the assessment of the optimum process parameters in abrasive water jet cutting of carbon fiber reinforced plastic composite. Cutting experiments were conducted by varying input parameters such as the traverse rate, standoff distance on three laminates of different thickness. Analysis of variance through response surface methodology technique was used to study the effect of each input parameters on the output responses such as kerf taper and surface roughness. Optimum parameters that provide the best machining quality were found using numerical and graphical optimization techniques. The results showed that increasing the traverse rate results in increased surface roughness and taper angle of the cut kerf. Hence lower traverse rate is preferable when machining quality is of high importance.

Author(s):  
Ameer Jalil Nader ◽  
K. Shather Saad

Abrasive water jet (AWJ) is one of the most advanced and valuable non-traditional machining processes because of its massive advantages of removing metals ranging from hard to soft. This paper focused on studying the influence of jet pressure, feed rate and standoff distance on surface roughness during cutting carbon steel using abrasive water jet cutting. A surface roughness device assessed the surface roughness by performing sixteen experiments to identify the distinct texture of the surface. Based on the experiences, the best surface roughness value was 3.14 μm at jet pressure 300 MPa, standoff distance 4mm and feed rate 30 mm/min. The Taguchi method was introduced to implement the experiments and indicate the most influential process parameters on average surface roughness. The experimental results reveal that feed rate has a significant effect on average surface roughness.


2015 ◽  
Vol 100 ◽  
pp. 394-399 ◽  
Author(s):  
Derzija Begic-Hajdarevic ◽  
Ahmet Cekic ◽  
Muhamed Mehmedovic ◽  
Almina Djelmic

Author(s):  
Jana Moravčíková ◽  
Daynier Rolando Delgado Sobrino ◽  
Peter Košťál

Abstract The present paper discusses the impact of the speed of an abrasive water jet cutting process on some surface properties and morphology of the S235JRG1 steel. The values of the cutting speeds used for the analysis were of 100, 150 and 200 mm.min−1 respectively. A contact profile method was used to analyze the surface roughness during the conducted tests. In this study, the observed surface roughness parameters were the Ra, Rt and Rz, respectively. At the same time, these parameters were measured in three positions, i.e.: at the inlet (A), in the middle (B) and at the exit position (C) of the water jet nozzle with respect to the machined material. The experimental study showed that the roughness of the surface reached higher peaks and was more pronounced at the exit position (C) of the water jet. Similarly, it was also concluded that a better quality of the surface was achieved at a speed of 150 mm.min−1.


2015 ◽  
Vol 22 (2) ◽  
pp. 315-326 ◽  
Author(s):  
Pavol Hreha ◽  
Agata Radvanska ◽  
Lucia Knapcikova ◽  
Grzegorz M. Królczyk ◽  
Stanisław Legutko ◽  
...  

Abstract The paper deals with a study of relations between the measured Ra, Rq, Rz surface roughness parameters, the traverse speed of cutting head v and the vibration parameters, PtP, RMS, vRa, generated during abrasive water jet cutting of the AISI 309 stainless steel. Equations for prediction of the surface roughness parameters were derived according to the vibration parameter and the traverse speed of cutting head. Accuracy of the equations is described according to the Euclidean distances. The results are suitable for an on-line control model simulating abrasive water jet cutting and machining using an accompanying physical phenomenon for the process control which eliminates intervention of the operator.


Sign in / Sign up

Export Citation Format

Share Document