The effect of washing on the electrical performance of knitted textile strain sensors for quantifying joint motion

2021 ◽  
pp. 152808372110592
Author(s):  
Cristina Isaia ◽  
Simon McMaster ◽  
Donal McNally

Successful market penetration of textile-based strain sensors requires long-term reliability which in turn relies on the washability of the sensor. First, this paper presents an evaluation of the effect of 5 washing cycles on the electrical performance of a knitted conductive transducer, over 1500 cycles of repetitive elongation. The promising behaviour of the textile sensor in this study showed that it might be possible to make a smart garment, capable of quantifying elbow flexion-extension motion, by integrating it into an elbow sleeve. Second, a prototype sleeve, incorporating a knitted sensor (the so-called smart sleeve), was tested in a simulated training/clinical setting by performing 50 flexion-extension cycles after 1, 5, 15, 25, 50 and 75 washes. In both studies, the electrical resistance of the sensor increased with the number of washes in a predictable manner and exhibited a repeatable, reliable and prompt response to elongation. In particular, the electrical pattern representing flexion-extension motion measured using the sleeve was clear and distinguishable up to the 75th wash. Moreover, resistance measurements within the same trial were repeatable at maximum flexion (≤2% variation) and at maximum extension (≤3% variation) and predictable with increasing washes (R2 = 0.992 at maximum flexion and R2 = 0.989 at maximum extension). The good washability of the smart sleeve, evidenced by its ability to detect, distinguish and measure parameters of flexion-extension motion up to 75 washes, makes it a suitable and sustainable choice for applications, such as strength conditioning or rehabilitation, where repetition count and speed are useful.

2018 ◽  
Author(s):  
Claudia Nava ◽  
Patrizio Sale ◽  
Vittorio Leggero ◽  
Simona Ferrante ◽  
Cira Fundaro' ◽  
...  

BACKGROUND In recent years, different smartphone apps have been validated for joint goniometry, but none for goniometric assessment of gait after stroke. OBJECTIVE The aims of our work were to assess:1) to assess intra-rater reliability of an image-based goniometric app – DrGoniometer- in the measurement of the extension, flexion angles and range of motion of the knee during the hemiparetic gait of a stroke patient; (2) its validity comparing to the reference method (electrogoniometer) for flexion-extension excursion measurements; and the intra-rater agreement in the choice of the video frames. METHODS An left-hemiparetic inpatient following haemorrhagic stroke was filmed using the app while walking on a linear path. An electrogoniometer was fixed on the medial face of the affected knee in order to record the dynamic goniometry during gait. Twenty-one raters, blinded to measurements, were recruited to rate knee angle measurements from video acquired with DrGoniometer. Each rater repeated the same procedure twice, the second one at least one day after the first measure. RESULTS Results showed that flexion angle measurements are reliable (ICC95%=0.66, 0.34;0.85; SEM=4°), and adequately precise (CV=14%). Extension angles measurements demonstrated moderate reliability and higher degree of variation (ICC=0.51, 0.09;0.77; SEM 4°; CV=53%). ROM values were: ICC=0.23 (-0.21;0.60); CV=20%. Accuracy of DrGoniometer compared to the electrogoniometer was 7.3±4.7°. The selection of maximum extension frame revealed an accordance of 58% and 72% within a range of ±5 or ±10 frames, respectively; while the best flexion frame reported 86% of agreement for both range of 5 and 10 frames. CONCLUSIONS The results demonstrated moderate to good reliability concerning the maximum extension and flexion angles, while assessing ROM DrGoniometer showed poor intra-rater reliability. Flexion angle measurements seemed to be reliable according to ICC and SEM values and more precise with a limited dispersion of results DrGoniometer revealed a good accuracy in the measurement of range of motion. The agreement of the maximal extension frame was anyway adequate within 5 frames (59%) and noticeably increased within 10 frames (72%). In conclusion, DrGoniometer was found to be a valid and reliable method for assessing knee angles during hemiparetic gait. Further studies are necessary to investigate inter-rater reliability and confirm our results.


2021 ◽  
Vol 9 (1) ◽  
pp. 232596712097753
Author(s):  
Brian J. Kelly ◽  
Alan W. Reynolds ◽  
Patrick J. Schimoler ◽  
Alexander Kharlamov ◽  
Mark Carl Miller ◽  
...  

Background: Lesions of the long head of the biceps can be successfully treated with biceps tenotomy or tenodesis when surgical management is elected. The advantage of a tenodesis is that it prevents the potential development of a cosmetic deformity or cramping muscle pain. Proponents of a subpectoral tenodesis believe that “groove pain” may remain a problem after suprapectoral tenodesis as a result of persistent motion of the tendon within the bicipital groove. Purpose/Hypothesis: To evaluate the motion of the biceps tendon within the bicipital groove before and after a suprapectoral intra-articular tenodesis. The hypothesis was that there would be minimal to no motion of the biceps tendon within the bicipital groove after tenodesis. Study Design: Controlled laboratory study. Methods: Six fresh-frozen cadaveric arms were dissected to expose the long head of the biceps tendon as well as the bicipital groove. Inclinometers and fiducials (optical markers) were used to measure the motions of the scapula, forearm, and biceps tendon through a full range of shoulder and elbow motions. A suprapectoral biceps tenodesis was then performed, and the motions were repeated. The motion of the biceps tendon was quantified as a function of scapular or forearm motion in each plane, both before and after the tenodesis. Results: There was minimal motion of the native biceps tendon during elbow flexion and extension but significant motion during all planes of scapular motion before tenodesis, with the most motion occurring during shoulder flexion-extension (20.73 ± 8.21 mm). The motion of the biceps tendon after tenodesis was significantly reduced during every plane of scapular motion compared with the native state ( P < .01 in all planes of motion), with a maximum motion of only 1.57 mm. Conclusion: There was a statistically significant reduction in motion of the biceps tendon in all planes of scapular motion after the intra-articular biceps tenodesis. The motion of the biceps tendon within the bicipital groove was essentially eliminated after the suprapectoral biceps tenodesis. Clinical Relevance: This arthroscopic suprapectoral tenodesis technique can significantly reduce motion of the biceps tendon within the groove in this cadaveric study, possibly reducing the likelihood of groove pain in the clinical setting.


2020 ◽  
Vol 9 (1) ◽  
pp. 1183-1191
Author(s):  
Xinlin Li ◽  
Rixuan Wang ◽  
Leilei Wang ◽  
Aizhen Li ◽  
Xiaowu Tang ◽  
...  

AbstractDevelopment of stretchable wearable devices requires essential materials with high level of mechanical and electrical properties as well as scalability. Recently, silicone rubber-based elastic polymers with incorporated conductive fillers (metal particles, carbon nanomaterials, etc.) have been shown to the most promising materials for enabling both high electrical performance and stretchability, but the technology to make materials in scalable fabrication is still lacking. Here, we propose a facile method for fabricating a wearable device by directly coating essential electrical material on fabrics. The optimized material is implemented by the noncovalent association of multiwalled carbon nanotube (MWCNT), carbon black (CB), and silicon rubber (SR). The e-textile sensor has the highest gauge factor (GF) up to 34.38 when subjected to 40% strain for 5,000 cycles, without any degradation. In particular, the fabric sensor is fully operational even after being immersed in water for 10 days or stirred at room temperature for 8 hours. Our study provides a general platform for incorporating other stretchable elastic materials, enabling the future development of the smart clothing manufacturing.


2012 ◽  
Vol 38 (3) ◽  
pp. 237-241 ◽  
Author(s):  
J. A. Bertelli ◽  
M. F. Ghizoni

Stretch injuries of the C5-C7 roots of the brachial plexus traditionally have been associated with palsies of shoulder abduction/external rotation, elbow flexion/extension, and wrist, thumb, and finger extension. Based on current myotome maps we hypothesized that, as far as motion is concerned, palsies involving C5-C6 and C5-C7 root injuries should be similar. In 38 patients with upper-type palsies of the brachial plexus, we examined for correlations between clinical findings and root injury level, as documented by CT tomomyeloscan. Contrary to commonly held beliefs, C5-C7 root injuries were not associated with loss of extension of the elbow, wrist, thumb, or fingers, but residual hand strength was much lower with C5-C7 vs C5-C6 lesions.


2021 ◽  
pp. 1-11

OBJECTIVE Posterior C1–2 fixation without fusion makes it possible to restore atlantoaxial motion after removing the implant, and it has been used as an alternative technique for odontoid fractures; however, the long-term efficacy of this technique remains uncertain. The purpose of the present study was to explore the long-term follow-up outcomes of patients with odontoid fractures who underwent posterior C1–2 fixation without fusion. METHODS A retrospective study was performed on 62 patients with type II/III fresh odontoid fractures who underwent posterior C1–2 fixation without fusion and were followed up for more than 5 years. The patients were divided into group A (23 patients with implant removal) and group B (39 patients without implant removal) based on whether they underwent a second surgery to remove the implant. The clinical outcomes were recorded and compared between the two groups. In group A, the range of motion (ROM) of C1–2 was calculated, and correlation analysis was performed to explore the factors that influence the ROM of C1–2. RESULTS A solid fracture fusion was found in all patients. At the final follow-up, no significant difference was found in visual analog scale score or American Spinal Injury Association Impairment Scale score between the two groups (p > 0.05), but patients in group A had a lower Neck Disability Index score and milder neck stiffness than did patients in group B (p < 0.05). In group A, 87.0% (20/23) of the patients had atlantoodontoid joint osteoarthritis at the final follow-up. In group A, the C1–2 ROM in rotation was 6.1° ± 4.5° at the final follow-up, whereas the C1–2 ROM in flexion-extension was 1.8° ± 1.2°. A negative correlation was found between the C1–2 ROM in rotation and the severity of tissue injury in the atlantoaxial region (r = –0.403, p = 0.024) and the degeneration of the atlantoodontoid joint (r = –0.586, p = 0.001). CONCLUSIONS Posterior C1–2 fixation without fusion can be used effectively for the management of fresh odontoid fractures. The removal of the implant can further improve the clinical efficacy, but satisfactory atlantoaxial motion cannot be maintained for a long time after implant removal. A surgeon should reconsider the contribution of posterior C1–2 fixation without fusion and secondary implant removal in preserving atlantoaxial mobility for patients with fresh odontoid fractures.


2017 ◽  
Vol 20 (sup1) ◽  
pp. S9-S10 ◽  
Author(s):  
S. Bastide ◽  
N. Vignais ◽  
F. Geffard ◽  
B. Berret

1998 ◽  
Vol 02 (01) ◽  
pp. 45-54 ◽  
Author(s):  
Shinji Tanaka ◽  
Kai-Nan An ◽  
Bernard F. Morrey

Three-dimensional kinematics of the ulnohumeral joint under simulated active elbow joint flexion-extension was obtained by using an electromagnetic tacking device. The joint motion was analyzed based on Eulerian angle description. In order to minimize the effect of "downstream cross-talk" on calculation of the three Eulerian angles, an optimal axis to best represent flexion-extension of the elbow joint was established. This axis, on average, is close to the line joining the centers of the capitellum and the trochlear groove. Furthermore, joint laxity under valgus-varus stress was also examined. With the weight of the forearm as the stress, maximums of 7.6° valgus-varus laxity and 5.3° axial rotation laxity were observed within a range of elbow flexion. The results of this study provide useful baseline information on joint laxity for the evaluation of elbow joints with implant replacements and other surgical treatment modalities.


Hand ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 602-608 ◽  
Author(s):  
Maureen A. O’Shaughnessy ◽  
Eric R. Wagner ◽  
Richard A. Berger ◽  
Sanjeev Kakar

Background: This study reviews long-term outcomes of partial wrist denervation focusing on need for and time to revision procedure. Methods: A retrospective study was conducted of all patients undergoing partial wrist denervation between 1994 and 2014. At average latest follow-up of 6.75 years (range, 1-21 years), clinical and radiographic data and need for revision surgery were recorded. Results: There were 100 wrists in 89 patients (61 male, 28 female) with average age at surgery of 54 years (range, 26-80). Principal diagnoses were arthritis (58%), inflammatory (19%), and posttraumatic arthritis (7%). Average flexion-extension arc was 83% and grip strength 75% of unaffected extremity. Average Mayo Wrist Scores improved from 48 preoperatively to 77 postoperatively. Sixty-nine percent of patients did not undergo other procedures during the time interval studied. Thirty-one percent underwent revision at an average of 26 months following denervation (range, 2-165). Conclusions: Partial wrist denervation is a motion-preserving procedure for patients with refractory wrist pain with 69% in this series requiring no further procedures. The remaining 31% experienced average symptom relief for 2 years prior to ultimately undergoing revision operation.


2019 ◽  
Vol 6 (3) ◽  
pp. 68 ◽  
Author(s):  
Elisa Panero ◽  
Laura Gastaldi ◽  
Mara Terzini ◽  
Cristina Bignardi ◽  
Arman Sard ◽  
...  

In flexion–extension motion, the interaction of several ligaments and bones characterizes the elbow joint stability. The aim of this preliminary study was to quantify the relative motion of the ulna with respect to the humerus in two human upper limbs specimens and to investigate the constraints role for maintaining the elbow joint stability in different section conditions. Two clusters of four markers were fixed respectively to the ulna and humerus, and their trajectory was recorded by a motion capture system during functional orthopedic maneuver. Considering the posterior bundle of medial collateral complex (pMUCL) and the coronoid, two section sequences were executed. The orthopedic maneuver of compression, pronation and varus force was repeated at 30°, 60° and 90° flexion for the functional investigation of constraints. Ulna deflection was compared to a baseline elbow flexion condition. With respect to the intact elbow, the coronoid osteotomy influences the elbow stability at 90° (deflection = 11.49 ± 17.39 mm), while small differences occur at 30° and 60°, due to ligaments constraint. The contemporary pMUCL section and coronoid osteotomy causes elbow instability, with large deflection at 30° (deflection = 34.40 ± 9.10 mm), 60° (deflection = 45.41 ± 18.47 mm) and 90° (deflection = 52.16 ± 21.92 mm). Surgeons may consider the pMUCL reconstruction in case of unfixable coronoid fracture.


Sign in / Sign up

Export Citation Format

Share Document