scholarly journals The Relationship Between ZEB1-AS1 Expression and the Prognosis of Patients With Advanced Gastric Cancer Receiving Chemotherapy

2019 ◽  
Vol 18 ◽  
pp. 153303381984906 ◽  
Author(s):  
Haina Chai ◽  
Chao Sun ◽  
Jun Liu ◽  
Haihui Sheng ◽  
Renyan Zhao ◽  
...  

Long noncoding RNA ZEB1 antisense RNA 1 plays a vital role in tumorigenesis and metastasis. However, the role of ZEB1 antisense RNA 1 in gastric cancer remains unclear. This study aimed to investigate the expression level of ZEB1 antisense RNA 1 in gastric cancer tissues and evaluate its association with clinicopathological features and prognosis of patients with advanced gastric cancer receiving chemotherapy. The expression levels of ZEB1 antisense RNA 1 were examined in 224 pairs of gastric cancer and adjacent noncancerous tissues by quantitative real-time polymerase chain reaction. The associations between ZEB1 antisense RNA 1 expression and clinicopathological features or survival of patients with advanced gastric cancer were assessed. The results showed that the expression levels of ZEB1 antisense RNA 1 in gastric cancer tissues were significantly higher than those in the paracancerous tissues ( P < .001). Moreover, the high ZEB1 antisense RNA 1 expression was associated with tumor, nodes, and metastases stage IV ( P = .018) and loss of E-cadherin expression ( P = .033). Multivariate Cox hazards regression analysis revealed that high ZEB1 antisense RNA 1 expression was an independent risk factor for predicting poor prognosis in patients with advanced gastric cancer (hazard ratio = 1.530, 95% confidence interval, 1.052-2.224, P = .026). In conclusion, the present findings suggest that ZEB1 antisense RNA 1 is an independent prognostic factor for patients with advanced gastric cancer receiving chemotherapy.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Feifei Zhang ◽  
Hui Wang ◽  
Jiang Yu ◽  
Xueqing Yao ◽  
Shibin Yang ◽  
...  

AbstractDe novo and acquired resistance, which are mainly mediated by genetic alterations, are barriers to effective routine chemotherapy. However, the mechanisms underlying gastric cancer (GC) resistance to chemotherapy are still unclear. We showed that the long noncoding RNA CRNDE was related to the chemosensitivity of GC in clinical samples and a PDX model. CRNDE was decreased and inhibited autophagy flux in chemoresistant GC cells. CRNDE directly bound to splicing protein SRSF6 to reduce its protein stability and thus regulate alternative splicing (AS) events. We determined that SRSF6 regulated the PICALM exon 14 skip splice variant and triggered a significant S-to-L isoform switch, which contributed to the expression of the long isoform of PICALM (encoding PICALML). Collectively, our findings reveal the key role of CRNDE in autophagy regulation, highlighting the significance of CRNDE as a potential prognostic marker and therapeutic target against chemoresistance in GC.


2021 ◽  
Vol 9 (2) ◽  
pp. e001364
Author(s):  
Yan Zhang ◽  
Hui Yang ◽  
Jun Zhao ◽  
Ping Wan ◽  
Ye Hu ◽  
...  

BackgroundThe activation of tumor-associated macrophages (TAMs) facilitates the progression of gastric cancer (GC). Cell metabolism reprogramming has been shown to play a vital role in the polarization of TAMs. However, the role of methionine metabolism in function of TAMs remains to be explored.MethodsMonocytes/macrophages were isolated from peripheral blood, tumor tissues or normal tissues from healthy donors or patients with GC. The role of methionine metabolism in the activation of TAMs was evaluated with both in vivo analyses and in vitro experiments. Pharmacological inhibition of the methionine cycle and modulation of key metabolic genes was employed, where molecular and biological analyses were performed.ResultsTAMs have increased methionine cycle activity that are mainly attributed to elevated methionine adenosyltransferase II alpha (MAT2A) levels. MAT2A modulates the activation and maintenance of the phenotype of TAMs and mediates the upregulation of RIP1 by increasing the histone H3K4 methylation (H3K4me3) at its promoter regions.ConclusionsOur data cast light on a novel mechanism by which methionine metabolism regulates the anti-inflammatory functions of monocytes in GC. MAT2A might be a potential therapeutic target for cancer cells as well as TAMs in GC.


2001 ◽  
Vol 37 ◽  
pp. S229
Author(s):  
J.C. Lee ◽  
S.R. Park ◽  
S.H. Lee ◽  
M.W. Sung ◽  
D.S. Heo ◽  
...  

2018 ◽  
Vol 24 (28) ◽  
pp. 3297-3302 ◽  
Author(s):  
Zhilong Ma ◽  
Min Chen ◽  
Xiaohu Yang ◽  
Bin Xu ◽  
Zhenshun Song ◽  
...  

Cancer-associated fibroblasts (CAFs) are an important cell type present in solid tumor microenvironments, including that of gastric cancer. They play a vital role in the promotion of tumorigenesis, angiogenesis, and cancer progression through paracrine signaling and modulation of the extracellular matrix. However, the exact molecular mechanism underlying the interaction between gastric cancer cells and stromal fibroblasts remains poorly understood. Recent studies have demonstrated that various factors, such as gene and microRNA variations, are involved in this process. This review discusses recent advances in understanding how these factors are regulated in CAFs and how they affect tumor biology, which may improve our understanding of their role in gastric cancer tumorigenesis and progression and provide new promising targets for therapeutic strategies.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qing Li ◽  
Dachuan Zhang ◽  
Hui Wang ◽  
Jun Xie ◽  
Lei Peng ◽  
...  

Solute carrier organic anion transporter family member 4A1 (SLCO4A1-AS1), a newly discovered lncRNA, may exert effects in tumors. Since its role in gastric cancer remains obscure, we sought to explore the mechanism of SLCO4A1-AS1 in gastric cancer. The relationship among SLCO4A1-AS1, miR-149-5p, and STAT3 was detected by bioinformatics, dual luciferase analysis, and Pearson’s test, and the expressions of these genes were determined by quantitative real-time PCR and Western blot. Moreover, CCK-8, flow cytometry, wound healing assay, and Transwell analysis were performed to verify the function of SLCO4A1-AS1 in gastric cancer. Rescue experiments were used to detect the role of miR-149-5p. The expressions of SLCO4A1-AS1 and STAT3 were increased, while the expression of miR-149-5p was suppressed in gastric cancer tissues and cell lines. In addition, STAT3 expression was negatively correlated with miR-149-5p expression but was positively correlated with SLCO4A1-AS1 expression. Overexpression of SLCO4A1-AS1 promoted cell viability, migration, invasion, and STAT3 expression but suppressed apoptosis, while knockdown of SLCO4A1-AS1 had the opposite effect. SLCO4A1-AS1 bound to miR-149-5p and targeted STAT3. Moreover, miR-149-5p mimic inhibited the malignant development of gastric cancer cells and obviously reversed the function of SLCO4A1-AS1 overexpression. Our research reveals that abnormally increased SLCO4A1-AS1 expression may be an important molecular mechanism in the development of gastric cancer.


2017 ◽  
Vol 94 (11) ◽  
pp. 812-820
Author(s):  
Evgeniya S. Fedoseeva ◽  
M. V. Savostikova ◽  
M. N. Narimanov ◽  
A. A. Pashaev ◽  
S. S. Kirichenko ◽  
...  

This review is designed to discuss possibilities for the treatment of advanced gastric cancer with reference to the prognostic and predictive value of molecular-biological parameters and the influence of hereditary predisposition to the development of neoplastic process. The data on modern pharmacotherapy of this disease based on the knowledge of molecular-biological parameters are presented including the following markers: HER2/neu, VGFR, c-met, TUBB3, CDH-1, BRCA-1, EGFR, TGF-ß, p53, Ki67 and PCNA. It is emphasized that the role of molecular-biological parameters associated with advanced gastric cancer is ambiguous. The prognostic and predictive significance of some of the markers is confirmed while that of others remains to be elucidated and requires further research.


2013 ◽  
Vol 24 (10) ◽  
pp. 2581-2588 ◽  
Author(s):  
L. Stenholm ◽  
J. Stoehlmacher-Williams ◽  
S.E. Al-Batran ◽  
N. Heussen ◽  
S. Akin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document