Spatial Perception in Desktop Virtual Environments

Author(s):  
Dennis C. Neale

This study investigated perceptual and cognitive issues relating to manipulations of geometric field of view (GFOV) in three-dimensional perspective displays and the effects of incorporating virtual environment enhancements in the interface based on visual momentum (VM) techniques. Sixty participants, who were pretested for spatial ability, were required to navigate through a virtual office building while estimating space dimensions and performing spatial orientation tasks. A 3 − 2 − 2 mixed-subjects design compared three levels of GFOV, two levels of VM, and two levels of Difficulty. This study effectively demonstrates that the spatial characteristics of architectural representations in perspective displays are not always accurately perceived. Furthermore, the results indicate that manipulations in GFOV can produce perceptual and cognitive errors for the basic space dimensions in perspective displays; however, VM can be used to compensate for many of the biases shown to occur.

Author(s):  
Dennis C. Neale

This study investigated influences on human spatial orientation and representation resulting from manipulations in the geometric field of view (GFOV) of a perspective display. Also examined was the impact of incorporating symbolic virtual environment enhancements in the interface based on visual momentum (VM) techniques. Sixty participants, pretested for spatial ability, were required to navigate through a virtual office building while performing a variety of spatial orientation tasks. A 3 × 2 × 2 mixed-subjects design compared three levels of GFOV, two levels of VM, and two levels of Difficulty. The findings indicate that decreases in GFOV produce spatial orientation and representation errors, and as task difficulty increases, errors are more pronounced. Furthermore, VM was shown to alleviate errors in spatial orientation and representation, especially when task difficulty was increased. Design recommendations are discussed based on the implications of the results.


2016 ◽  
Vol 13 (122) ◽  
pp. 20160414 ◽  
Author(s):  
Mehdi Moussaïd ◽  
Mubbasir Kapadia ◽  
Tyler Thrash ◽  
Robert W. Sumner ◽  
Markus Gross ◽  
...  

Understanding the collective dynamics of crowd movements during stressful emergency situations is central to reducing the risk of deadly crowd disasters. Yet, their systematic experimental study remains a challenging open problem due to ethical and methodological constraints. In this paper, we demonstrate the viability of shared three-dimensional virtual environments as an experimental platform for conducting crowd experiments with real people. In particular, we show that crowds of real human subjects moving and interacting in an immersive three-dimensional virtual environment exhibit typical patterns of real crowds as observed in real-life crowded situations. These include the manifestation of social conventions and the emergence of self-organized patterns during egress scenarios. High-stress evacuation experiments conducted in this virtual environment reveal movements characterized by mass herding and dangerous overcrowding as they occur in crowd disasters. We describe the behavioural mechanisms at play under such extreme conditions and identify critical zones where overcrowding may occur. Furthermore, we show that herding spontaneously emerges from a density effect without the need to assume an increase of the individual tendency to imitate peers. Our experiments reveal the promise of immersive virtual environments as an ethical, cost-efficient, yet accurate platform for exploring crowd behaviour in high-risk situations with real human subjects.


2010 ◽  
pp. 180-193 ◽  
Author(s):  
F. Steinicke ◽  
G. Bruder ◽  
J. Jerald ◽  
H. Frenz

In recent years virtual environments (VEs) have become more and more popular and widespread due to the requirements of numerous application areas in particular in the 3D city visualization domain. Virtual reality (VR) systems, which make use of tracking technologies and stereoscopic projections of three-dimensional synthetic worlds, support better exploration of complex datasets. However, due to the limited interaction space usually provided by the range of the tracking sensors, users can explore only a portion of the virtual environment (VE). Redirected walking allows users to walk through large-scale immersive virtual environments (IVEs) such as virtual city models, while physically remaining in a reasonably small workspace by intentionally injecting scene motion into the IVE. With redirected walking users are guided on physical paths that may differ from the paths they perceive in the virtual world. The authors have conducted experiments in order to quantify how much humans can unknowingly be redirected. In this chapter they present the results of this study and the implications for virtual locomotion user interfaces that allow users to view arbitrary real world locations, before the users actually travel there in a natural environment.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4605
Author(s):  
Chien-Hsiung Chen ◽  
Meng-Xi Chen

This study examined how users acquire spatial knowledge in an onscreen three-dimensional virtual environment when using overview maps. This experiment adopted a three (the size of overview maps) x two (the transparency of overview maps) between-subjects design. Three levels of the size of overview maps were evaluated, i.e., 1/2, 1/8, and 1/16 screen size. Comparisons between 20% transparent and 80% transparent were made. We asked 108 participants to complete spatial perception tasks and fill out questionnaires regarding their feelings. The results indicate the following: (1) The effects of the transparency of overview maps on users’ spatial perception vary with the size of overview maps. The 80% transparent overview map is significantly more efficient than the 20% transparent overview map in the condition of 1/2 screen size. However, the result is opposite in the condition of 1/8 screen size. (2) Users like the 80% transparent overview map significantly better than the 20% transparent overview map in the condition of 1/2 screen size. (3) Concerning subjective evaluations of satisfaction, preference, and system usability, overview maps in the condition of 1/8 screen size are significantly better than those in the condition of 1/2 screen size.


1996 ◽  
Vol 5 (3) ◽  
pp. 274-289 ◽  
Author(s):  
Claudia Hendrix ◽  
Woodrow Barfield

This paper reports the results of three studies, each of which investigated the sense of presence within virtual environments as a function of visual display parameters. These factors included the presence or absence of head tracking, the presence or absence of stereoscopic cues, and the geometric field of view used to create the visual image projected on the visual display. In each study, subjects navigated a virtual environment and completed a questionnaire designed to ascertain the level of presence experienced by the participant within the virtual world. Specifically, two aspects of presence were evaluated: (1) the sense of “being there” and (2) the fidelity of the interaction between the virtual environment participant and the virtual world. Not surprisingly, the results of the first and second study indicated that the reported level of presence was significantly higher when head tracking and stereoscopic cues were provided. The results from the third study showed that the geometric field of view used to design the visual display highly influenced the reported level of presence, with more presence associated with a 50 and 90° geometric field of view when compared to a narrower 10° geometric field of view. The results also indicated a significant positive correlation between the reported level of presence and the fidelity of the interaction between the virtual environment participant and the virtual world. Finally, it was shown that the survey questions evaluating several aspects of presence produced reliable responses across questions and studies, indicating that the questionnaire is a useful tool when evaluating presence in virtual environments.


2005 ◽  
Vol 32 (5) ◽  
pp. 777-785 ◽  
Author(s):  
Ebru Cubukcu ◽  
Jack L Nasar

Discrepanices between perceived and actual distance may affect people's spatial behavior. In a previous study Nasar, using self report of behavior, found that segmentation (measured through the number of buildings) along the route affected choice of parking garage and path from the parking garage to a destination. We recreated that same environment in a three-dimensional virtual environment and conducted a test to see whether the same factors emerged under these more controlled conditions and to see whether spatial behavior in the virtual environment accurately reflected behavior in the real environment. The results confirmed similar patterns of response in the virtual and real environments. This supports the use of virtual reality as a tool for predicting behavior in the real world and confirms increases in segmentation as related to increases in perceived distance.


1996 ◽  
Vol 5 (3) ◽  
pp. 330-345 ◽  
Author(s):  
Edward J. Rinalducci

This paper provides an overview of the literature on the visual system, placing special emphasis on those visual characteristics regarded as necessary to produce adequate visual fidelity in virtual environments. These visual cues apply to the creation of various virtual environments including those involving flying, driving, sailing, or walking. A variety of cues are examined, in particular, motion, color, stereopsis, pictorial and secondary cues, physiological cues, texture, vertical development, luminance, field-of-view, and spatial resolution. Conclusions and recommendations for research are also presented.


2020 ◽  
Vol 17 (2) ◽  
pp. 485-512
Author(s):  
Sevda Ceylan Dadakoğlu ◽  
Şeniz Aksoy

Depending on the rapid development of technology, many environments, tools and methods are being developed in the field of education and training. These innovations include education in virtual worlds and three-dimensional education technologies that we have encountered frequently in recent years. With the improvement of three-dimensional education technologies, it is known that learning is used in "3D virtual worlds". Accordingly, it is mentioned that virtual environments are used in all levels of education, learning and teaching process.In this study, the virtual world of Second Life, which is a three-dimensional online life simulation and can be defined as an alternative teaching environment, was examined. The aim of this article; Introducing Second Life, a virtual environment that can be used in art and design education, to provide a theoretical perspective, to contribute to researchers and teachers who want to use 3D virtual worlds for educational purposes and to create a theoretical basis for the researches in this environment.Therefore, first of all, 3D virtual worlds are examined from a general perspective. Then, the Second Life application from 3D virtual environments was examined in detail and its general characteristics were defined.In addition, the use of Second Life in education, construction and content creation within the application, art and design making and art education were discussed. For this reason, examples of the artists using the Second Life application were given and some of the educational practices related to how Second Life was used in art and design education were included. In the conclusion part, with the development of technology and the use of virtual worlds in education, the gains that can be achieved in art classes were also included. In this context, the importance of the use of technology, various computer applications (VR, augmented reality applications, etc.) and 3D virtual worlds was mentioned in terms of today's art education gains. It was also stated that the ways of incorporating technology into art education should be questioned. ​Extended English summary is in the end of Full Text PDF (TURKISH) file.   Özet Teknolojinin hızla ilerlemesine bağlı olarak eğitim ve öğretim alanında birçok ortam, araç ve yöntem geliştirilmektedir. Bu yeniliklerin içerisinde son yıllarda sıkça karşılaştığımız sanal dünyalarda eğitim ve üç boyutlu eğitim teknolojileri de yer almaktadır. Üç boyutlu eğitim teknolojilerinin iyileştirilmesiyle beraber “3B sanal dünyalarda öğrenme”nin ön plana çıktığı bilinmektedir. Buna bağlı olarak eğitimin tüm kademelerinde, öğrenme ve öğretme sürecinde sanal ortamların işe koşulduğundan söz edilmektedir. Bu araştırmada üç boyutlu, çevrimiçi bir yaşam simülasyonu olan ve alternatif bir öğretim ortamı olarak tanımlanabilen Second Life sanal dünyası incelenmiştir. Bu makalenin amacı; sanat ve tasarım eğitiminde kullanılabilecek sanal ortamlardan Second Life’ı tanıtmak, bu konuda teorik bir perspektif kazandırmak, 3B sanal dünyaları eğitim amaçlı kullanmak isteyen araştırmacı ve öğretmenlere katkı sağlamak ve bu ortamda yapılacak araştırmalar için kuramsal zemin oluşturmaktır. Bu nedenle öncelikle 3B sanal dünyalara genel bir çerçeveden bakılmıştır. Ardından 3B sanal ortamlardan Second Life uygulaması detaylı bir biçimde incelenerek genel özellikleri tanımlanmıştır. Second Life uygulamasının eğitimde kullanılması, uygulama dâhilinde inşa ve içerik oluşturma, sanat ve tasarım yapma ve sanat eğitimi konusu tartışılmıştır. Daha sonra Second Life uygulamasını kullanan sanatçılara örnekler verilmiş ve Second Life’ın sanat ve tasarım eğitiminde nasıl kullanıldığına ilişkin eğitim uygulamalarından bazılarına yer verilmiştir. Sonuç kısmında teknolojinin gelişmesi ve sanal dünyaların eğitimde kullanımıyla beraber sanat derslerinde elde edilebilecek kazanımlar yer almıştır. Buna bağlı olarak teknolojinin, çeşitli bilgisayar uygulamalarının (VR, artırılmış gerçeklik uygulamaları, vb.) 3B sanal dünyaların eğitimde kullanılmasının günümüz sanat eğitimi kazanımları açısından önemine değinilmiştir. Ayrıca sanat eğitimine teknolojinin dâhil edilme biçimlerinin sorgulanması gerektiği ifade edilmiştir.


2021 ◽  
Vol 2 ◽  
Author(s):  
Lauren Buck ◽  
Richard Paris ◽  
Bobby Bodenheimer

Spatial perception in immersive virtual environments, particularly regarding distance perception, is a well-studied topic in virtual reality literature. Distance compression, or the underestimation of distances, is and has been historically prevalent in all virtual reality systems. The problem of distance compression still remains open, but recent advancements have shown that as systems have developed, the level of distance compression has decreased. Here, we add evidence to this trend by beginning the assessment of distance compression in the HTC Vive Pro. To our knowledge, there are no archival results that report any findings about distance compression in this system. Using a familiar paradigm for studying distance compression in virtual reality hardware, we asked users to blind walk to a target object placed in a virtual environment and assessed their judgments based on those distances. We find that distance compression in the HTC Vive Pro mirrors that of the HTC Vive. Our results are not particularly surprising, considering the nature of the differences between the two systems, but they lend credence to the finding that resolution does not affect distance compression. More extensive study should be performed to reinforce these results.


2010 ◽  
Vol 19 (6) ◽  
pp. 527-543 ◽  
Author(s):  
Eric D. Ragan

Researchers have proposed that immersion could have advantages for tasks involving abstract mental activities, such as conceptual learning; however, there are few empirical results that support this idea. We hypothesized that higher levels of immersion would benefit such tasks if the mental activity could be mapped to objects or locations in a 3D environment. To investigate this hypothesis, we performed an experiment in which participants memorized procedures in a virtual environment and then attempted to recall those procedures. We aimed to understand the effects of three components of immersion on performance. The results demonstrate that a matched software field of view (SFOV), a higher physical field of view (FOV), and a higher field of regard (FOR) all contributed to more effective memorization. The best performance was achieved with a matched SFOV and either a high FOV or a high FOR, or both. In addition, our experiment demonstrated that memorization in a virtual environment could be transferred to the real world. The results suggest that, for procedure memorization tasks, increasing the level of immersion even to moderate levels, such as those found in head mounted displays (HMDs) and display walls, can improve performance significantly compared to lower levels of immersion. Hypothesizing that the performance improvements provided by higher levels of immersion can be attributed to enhanced spatial cues, we discuss the values and limitations of supplementing conceptual information with spatial information in educational VR.


Sign in / Sign up

Export Citation Format

Share Document