scholarly journals Brain Changes Following Executive Control Training in Older Adults

2017 ◽  
Vol 31 (10-11) ◽  
pp. 910-922 ◽  
Author(s):  
Areeba Adnan ◽  
Anthony J. W. Chen ◽  
Tatjana Novakovic-Agopian ◽  
Mark D’Esposito ◽  
Gary R. Turner

Background. While older adults are able to attend to goal-relevant information, the capacity to ignore irrelevant or distracting information declines with advancing age. This decline in selective attention has been associated with poor modulation of brain activity in sensory cortices by anterior brain regions implicated in cognitive control. Objective. Here we investigated whether participation in an executive control training program would result in improved selective attention and associated functional brain changes in a sample of healthy older adults (N = 24, age 60-85 years). Methods. Participants were enrolled in a goal-oriented attentional self-regulation (GOALS) program (n = 11) or a brain health education workshop as an active control condition (n = 13). All participants performed a working memory task requiring attention to or suppression of visual stimuli based on goal-relevance during functional magnetic resonance imaging. Results. We observed a pattern of enhanced activity in right frontal, parietal and temporal brain regions from pre- to posttraining in the GOALS intervention group, which predicted the selectivity of subsequent memory for goal-relevant stimuli. Conclusions. Executive control training in older adults alters functional activity in brain regions associated with attentional control, and selectively predicts behavioral outcome.

2018 ◽  
Author(s):  
Robert M Mok ◽  
M. Clare O'Donoghue ◽  
Nicholas E Myers ◽  
Erin H.S. Drazich ◽  
Anna Christina Nobre

Working memory (WM) is essential for normal cognitive function, but shows marked decline in aging. Studies have shown that the ability to attend selectively to relevant information amongst competing distractors is related to WM capacity. The extent to which WM deficits in aging are related to impairments in selective attention is unclear. To investigate the neural mechanisms supporting selective attention in WM in aging, we tested a large group of older adults using functional magnetic resonance imaging whilst they performed a category-based (faces/houses) selective-WM task. Older adults were able to use attention to encode targets and suppress distractors to reach high levels of task performance. A subsequent, surprise recognition-memory task showed strong consequences of selective attention. Attended items in the relevant category were recognised significantly better than items in the ignored category. Neural measures also showed reliable markers of selective attention during WM. Purported control regions including the dorsolateral and inferior prefrontal and anterior cingulate cortex were reliably recruited for attention to both categories. Activation levels in category-sensitive visual cortex showed reliable modulation according to attentional demands, and positively correlated with subsequent memory measures of attention and WM span. Psychophysiological interaction analyses showed that activity in category-sensitive areas were coupled with non-sensory cortex known to be involved in cognitive control and memory processing, including regions in the PFC and hippocampus. In summary, we found that brain mechanisms of attention for selective WM are relatively preserved in aging, and individual differences in these abilities corresponded to the degree of attention-related modulation in the brain.


2021 ◽  
Vol 27 (6) ◽  
pp. 520-532
Author(s):  
Ivett E. Ortega-Mora ◽  
Ulises Caballero-Sánchez ◽  
Talía V. Román-López ◽  
Cintia B. Rosas-Escobar ◽  
Mónica Méndez-Díaz ◽  
...  

AbstractAttention allows us to select relevant information from the background. Although several studies have described that cannabis use induces deleterious effects on attention, it remains unclear if cannabis dependence affects the attention network systems differently.Objectives:To evaluate whether customary consumption of cannabis or cannabis dependence impacts the alerting, orienting, and executive control systems in young adults; to find out whether it is related to tobacco or alcohol dependence and if cannabis use characteristics are associated with the attention network systems.Method:One-hundred and fifty-four healthy adults and 102 cannabis users performed the Attention Network Test (ANT) to evaluate the alerting, orienting, and executive control systems.Results:Cannabis use enhanced the alerting system but decreased the orienting system. Moreover, those effects seem to be associated with cannabis dependence. Out of all the cannabis-using variables, only the age of onset of cannabis use significantly predicted the efficiency of the orienting and executive control systems.Conclusion:Cannabis dependence favors tonic alertness but reduces selective attention ability; earlier use of cannabis worsens the efficiency of selective attention and resolution of conflicts.


2021 ◽  
Author(s):  
Lupeng Wang ◽  
James P. Herman ◽  
Richard J. Krauzlis

AbstractCovert visual attention is accomplished by a cascade of mechanisms distributed across multiple brain regions. Recent studies in primates suggest a parcellation in which visual cortex is associated with enhanced representations of relevant stimuli, whereas subcortical circuits are associated with selection of visual targets and suppression of distractors. Here we identified how neuronal activity in the superior colliculus (SC) of head-fixed mice is modulated during covert visual attention. We found that spatial cues modulated both firing rate and spike-count correlations, and that the cue-related modulation in firing rate was due to enhancement of activity at the cued spatial location rather than suppression at the uncued location. This modulation improved the neuronal discriminability of visual-change-evoked activity between contralateral and ipsilateral SC neurons. Together, our findings indicate that neurons in the mouse SC contribute to covert visual selective attention by biasing processing in favor of locations expected to contain relevant information.


2000 ◽  
Vol 11 (6) ◽  
pp. 467-473 ◽  
Author(s):  
Paul E. Downing

The relationship between working memory and selective attention has traditionally been discussed as operating in one direction: Attention filters incoming information, allowing only relevant information into short-term processing stores. This study tested the prediction that the contents of visual working memory also influence the guidance of selective attention. Participants held a sample object in working memory on each trial. Two objects, one matching the sample and the other novel, were then presented simultaneously. As measured by a probe task, attention shifted to the object matching the sample. This effect generalized across object type, attentional-probe task, and working memory task. In contrast, a matched task with no memory requirement showed the opposite pattern, demonstrating that this effect is not simply due to exposure to the sample. These results confirm a specific prediction about the influence of working memory contents on the guidance of attention.


2020 ◽  
Vol 32 (10) ◽  
pp. 1946-1962 ◽  
Author(s):  
Jennifer C. Weeks ◽  
Cheryl L. Grady ◽  
Lynn Hasher ◽  
Bradley R. Buchsbaum

Goal-relevant information can be maintained in working memory over a brief delay interval to guide an upcoming decision. There is also evidence suggesting the existence of a complementary process: namely, the ability to suppress information that is no longer relevant to ongoing task goals. Moreover, this ability to suppress or inhibit irrelevant information appears to decline with age. In this study, we compared younger and older adults undergoing fMRI on a working memory task designed to address whether the modulation of neural representations of relevant and no-longer-relevant items during a delay interval is related to age and overall task performance. Following from the theoretical predictions of the inhibitory deficit hypothesis of aging, we hypothesized that older adults would show higher activation of no-longer-relevant items during a retention delay compared to young adults and that higher activation of these no-longer-relevant items would predict worse recognition memory accuracy for relevant items. Our results support this prediction and more generally demonstrate the importance of goal-driven modulation of neural activity in successful working memory maintenance. Furthermore, we showed that the largest age differences in the regulation of category-specific pattern activity during working memory maintenance were seen throughout the medial temporal lobe and prominently in the hippocampus, further establishing the importance of “long-term memory” retrieval mechanisms in the context of high-load working memory tasks that place large demands on attentional selection mechanisms.


2017 ◽  
Vol 29 (2) ◽  
pp. 310-321 ◽  
Author(s):  
Jade Jackson ◽  
Anina N. Rich ◽  
Mark A. Williams ◽  
Alexandra Woolgar

Human cognition is characterized by astounding flexibility, enabling us to select appropriate information according to the objectives of our current task. A circuit of frontal and parietal brain regions, often referred to as the frontoparietal attention network or multiple-demand (MD) regions, are believed to play a fundamental role in this flexibility. There is evidence that these regions dynamically adjust their responses to selectively process information that is currently relevant for behavior, as proposed by the “adaptive coding hypothesis” [Duncan, J. An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2, 820–829, 2001]. Could this provide a neural mechanism for feature-selective attention, the process by which we preferentially process one feature of a stimulus over another? We used multivariate pattern analysis of fMRI data during a perceptually challenging categorization task to investigate whether the representation of visual object features in the MD regions flexibly adjusts according to task relevance. Participants were trained to categorize visually similar novel objects along two orthogonal stimulus dimensions (length/orientation) and performed short alternating blocks in which only one of these dimensions was relevant. We found that multivoxel patterns of activation in the MD regions encoded the task-relevant distinctions more strongly than the task-irrelevant distinctions: The MD regions discriminated between stimuli of different lengths when length was relevant and between the same objects according to orientation when orientation was relevant. The data suggest a flexible neural system that adjusts its representation of visual objects to preferentially encode stimulus features that are currently relevant for behavior, providing a neural mechanism for feature-selective attention.


2011 ◽  
Vol 24 (3) ◽  
pp. 187-199 ◽  
Author(s):  
Timothy B. Meier ◽  
Lin Naing ◽  
Lisa E. Thomas ◽  
Veena A. Nair ◽  
Argye E. Hillis ◽  
...  

Functional imaging studies consistently find that older adults recruit bilateral brain regions in cognitive tasks that are strongly lateralized in younger adults, a characterization known as the Hemispheric Asymmetry Reduction in Older Adults model. While functional imaging displays what brain areas are active during tasks, it cannot demonstrate what brain regions are necessary for task performance. We used behavioral data from acute stroke patients to test the hypothesis that older adults need both hemispheres for a verbal working memory task that is predominantly left-lateralized in younger adults. Right-handed younger (age ≥ 50,n= 7) and older adults (age > 50,n= 21) with acute unilateral stroke, as well as younger (n= 6) and older (n= 13) transient ischemic attack (TIA) patients, performed a self-paced verbal item-recognition task. Older patients with stroke to either hemisphere had a higher frequency of deficits in the verbal working memory task compared to older TIA patients. Additionally, the deficits in older stroke patients were mainly in retrieval time while the deficits in younger stroke patients were mainly in accuracy. These data suggest that bihemispheric activity is necessary for older adults to successfully perform a verbal working memory task.


GeroPsych ◽  
2016 ◽  
Vol 29 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Véronique Cornu ◽  
Jean-Paul Steinmetz ◽  
Carine Federspiel

Abstract. A growing body of research demonstrates an association between gait disorders, falls, and attentional capacities in older adults. The present work empirically analyzes differences in gait parameters in frail institutionalized older adults as a function of selective attention. Gait analysis under single- and dual-task conditions as well as selective attention measures were collected from a total of 33 nursing-home residents. We found that differences in selective attention performances were related to the investigated gait parameters. Poorer selective attention performances were associated with higher stride-to-stride variabilities and a slowing of gait speed under dual-task conditions. The present findings suggest a contribution of selective attention to a safe gait. Implications for gait rehabilitation programs are discussed.


2014 ◽  
Vol 28 (3) ◽  
pp. 148-161 ◽  
Author(s):  
David Friedman ◽  
Ray Johnson

A cardinal feature of aging is a decline in episodic memory (EM). Nevertheless, there is evidence that some older adults may be able to “compensate” for failures in recollection-based processing by recruiting brain regions and cognitive processes not normally recruited by the young. We review the evidence suggesting that age-related declines in EM performance and recollection-related brain activity (left-parietal EM effect; LPEM) are due to altered processing at encoding. We describe results from our laboratory on differences in encoding- and retrieval-related activity between young and older adults. We then show that, relative to the young, in older adults brain activity at encoding is reduced over a brain region believed to be crucial for successful semantic elaboration in a 400–1,400-ms interval (left inferior prefrontal cortex, LIPFC; Johnson, Nessler, & Friedman, 2013 ; Nessler, Friedman, Johnson, & Bersick, 2007 ; Nessler, Johnson, Bersick, & Friedman, 2006 ). This reduced brain activity is associated with diminished subsequent recognition-memory performance and the LPEM at retrieval. We provide evidence for this premise by demonstrating that disrupting encoding-related processes during this 400–1,400-ms interval in young adults affords causal support for the hypothesis that the reduction over LIPFC during encoding produces the hallmarks of an age-related EM deficit: normal semantic retrieval at encoding, reduced subsequent episodic recognition accuracy, free recall, and the LPEM. Finally, we show that the reduced LPEM in young adults is associated with “additional” brain activity over similar brain areas as those activated when older adults show deficient retrieval. Hence, rather than supporting the compensation hypothesis, these data are more consistent with the scaffolding hypothesis, in which the recruitment of additional cognitive processes is an adaptive response across the life span in the face of momentary increases in task demand due to poorly-encoded episodic memories.


Sign in / Sign up

Export Citation Format

Share Document