scholarly journals A module-based simulation framework to facilitate the modeling of Quantum Key Distribution system post-processing functionalities

Author(s):  
Ryan D Engle ◽  
Douglas D Hodson ◽  
Logan O Mailloux ◽  
Michael R Grimaila ◽  
Colin V McLaughlin ◽  
...  

Quantum Key Distribution (QKD) systems are a novel technology that exploits the laws of quantum mechanics to generate and distribute unconditionally secure cryptographic keys between two geographically separated parties. They are suitable for use in applications where high levels of secrecy are required, such as banking, government, and military environments. In this paper, we describe the development of a module-based QKD simulation framework that facilitates the modeling of QKD post-processing functionalities. We highlight design choices made to improve upon an initial design, which included the segmentation of functionalities associated with various phases of QKD post-processing into discrete modules implementing abstract interfaces. In addition, communication between modules was improved by implementing observers to share data, and a specific strategy for dealing with post-processing synchronization and configuration activities was designed. Collectively, these improvements resulted in a significantly enhanced analysis capability to model and study the security and performance characteristics associated with specific QKD system designs.

Author(s):  
Douglas D Hodson ◽  
Michael R Grimaila ◽  
Logan O Mailloux ◽  
Colin V McLaughlin ◽  
Gerald Baumgartner

This article presents the background, development, and implementation of a simulation framework used to model the quantum exchange aspects of Quantum Key Distribution (QKD) systems. The presentation of our simulation framework is novel from several perspectives, one of which is the lack of published information in this area. QKD is an innovative technology which exploits the laws of quantum mechanics to generate and distribute unconditionally secure cryptographic keys. While QKD offers the promise of unconditionally secure key distribution, real world systems are built from non-ideal components which necessitates the need to understand the impact these non-idealities have on system performance and security. To study these non-idealities we present the development of a quantum communications modeling and simulation capability. This required a suitable mathematical representation of quantum optical pulses and optical component transforms. Furthermore, we discuss how these models are implemented within our Discrete Event Simulation-based framework and show how it is used to study a variety of QKD implementations.


2005 ◽  
Vol 03 (01) ◽  
pp. 141-146 ◽  
Author(s):  
FABIO A. BOVINO ◽  
PIETRO VARISCO ◽  
ANNA MARTINOLI ◽  
PAOLO DE NICOLO ◽  
SANDRA BRUZZO ◽  
...  

We present the architecture and recent experimental results for a quantum key distribution system realized at Elsag spa Quantum Optics Laboratory with a key distribution rate suitable for practical industrial applications. The current system can reliably distribute secure cryptographic keys at a rate of 1,500 bit per second and higher at a few hundred meters, with a quantum bit error rate lower than 1%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kadir Gümüş ◽  
Tobias A. Eriksson ◽  
Masahiro Takeoka ◽  
Mikio Fujiwara ◽  
Masahide Sasaki ◽  
...  

AbstractReconciliation is a key element of continuous-variable quantum key distribution (CV-QKD) protocols, affecting both the complexity and performance of the entire system. During the reconciliation protocol, error correction is typically performed using low-density parity-check (LDPC) codes with a single decoding attempt. In this paper, we propose a modification to a conventional reconciliation protocol used in four-state protocol CV-QKD systems called the multiple decoding attempts (MDA) protocol. MDA uses multiple decoding attempts with LDPC codes, each attempt having fewer decoding iteration than the conventional protocol. Between each decoding attempt we propose to reveal information bits, which effectively lowers the code rate. MDA is shown to outperform the conventional protocol in regards to the secret key rate (SKR). A 10% decrease in frame error rate and an 8.5% increase in SKR are reported in this paper. A simple early termination for the LDPC decoder is also proposed and implemented. With early termination, MDA has decoding complexity similar to the conventional protocol while having an improved SKR.


2017 ◽  
Vol 25 (17) ◽  
pp. 20045 ◽  
Author(s):  
Heasin Ko ◽  
Byung-Seok Choi ◽  
Joong-Seon Choe ◽  
Kap-Joong Kim ◽  
Jong-Hoi Kim ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shengjun Ren ◽  
Shuai Yang ◽  
Adrian Wonfor ◽  
Ian White ◽  
Richard Penty

AbstractWe present an experimental demonstration of the feasibility of the first 20 + Mb/s Gaussian modulated coherent state continuous variable quantum key distribution system with a locally generated local oscillator at the receiver (LLO-CVQKD). To increase the signal repetition rate, and hence the potential secure key rate, we equip our system with high-performance, wideband devices and design the components to support high repetition rate operation. We have successfully trialed the signal repetition rate as high as 500 MHz. To reduce the system complexity and correct for any phase shift during transmission, reference pulses are interleaved with quantum signals at Alice. Customized monitoring software has been developed, allowing all parameters to be controlled in real-time without any physical setup modification. We introduce a system-level noise model analysis at high bandwidth and propose a new ‘combined-optimization’ technique to optimize system parameters simultaneously to high precision. We use the measured excess noise, to predict that the system is capable of realizing a record 26.9 Mb/s key generation in the asymptotic regime over a 15 km signal mode fibre. We further demonstrate the potential for an even faster implementation.


2009 ◽  
Vol 27 (15) ◽  
pp. 3202-3211 ◽  
Author(s):  
Q. Xu ◽  
M. Sabban ◽  
M.B. Costa e Silva ◽  
P. Gallion ◽  
F.J. Mendieta

Sign in / Sign up

Export Citation Format

Share Document