scholarly journals Exploiting cooperative sensing for accurate target tracking in industrial Internet of things

2019 ◽  
Vol 15 (12) ◽  
pp. 155014771989220 ◽  
Author(s):  
Muneeb A Khan ◽  
Muazzam A Khan ◽  
Anis U Rahman ◽  
Asad Waqar Malik ◽  
Safdar A Khan

Wireless sensor networks are a cornerstone of the Internet of things with many applications. An important aspect of such applications is target tracking using self-positioned known sensor nodes. Over the years, many schemes have been proposed to locate and track the target path. However, accuracy and reliable tracking remain an open area of research. In this article, we propose a dynamic cooperative multilateral sensing scheme for indoor industrial environments to improve target localization and tracking accuracy. The scheme is designed to select reliable nodes based on the distance between nodes within-cluster and to the target for reduced positioning error. Furthermore, a cluster node is dynamically selected based on distance from the base station. We simulate the proposed technique in scenarios with tracking at regular intervals and with the complete path. Furthermore, the performance of the scheme is also tested under different sensor coverage areas. The results show that the proposed scheme provides better target tracking with up to 19% higher accuracy in comparison to the traditional trilateration scheme.

IoT ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 5-20 ◽  
Author(s):  
Petros Spachos

Precision Agriculture (PA) is an ever-expanding field that takes modern technological advancements and applies it to farming practices to reduce waste and increase output. One advancement that can play a significant role in achieving precision agriculture is wireless technology, and specifically the Internet of Things (IoT) devices. Small, inch scale and low-cost devices can be used to monitor great agricultural areas. In this paper, a system for precision viticulture which uses IoT devices for real-time monitoring is proposed. The different components of the system are programmed properly and the interconnection between them is designed to minimize energy consumption. Wireless sensor nodes measure soil moisture and soil temperature in the field and transmit the information to a base station. If the conditions are optimal for a disease or pest to occur, a drone flies towards the area. When the drone is over the node, pictures are captured and then it returns to the base station for further processing. The feasibility of the system is examined through experimentation in a realistic scenario.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 795 ◽  
Author(s):  
Waleed Ismael ◽  
Mingsheng Gao ◽  
Asma Al-Shargabi ◽  
Ammar Zahary

Due to the ever-increasing number and diversity of data sources, and the continuous flow of data that are inevitably redundant and unused to the cloud, the Internet of Things (IoT) brings several problems including network bandwidth, the consumption of network energy, cloud storage, especially for paid volume, and I/O throughput as well as handling huge amount of stored data in the cloud. These call for data pre-processing at the network edge before data transmission over the network takes place. Data reduction is a method for mitigating such problems. Most state-of-the-art data reduction approaches employ a single tier, such as gateways, or two tiers, such gateways and the cloud data center or sensor nodes and base station. In this paper, an approach for IoT data reduction is proposed using in-networking data filtering and fusion. The proposed approach consists of two layers that can be adapted at either a single tier or two tiers. The first layer of the proposed approach is the data filtering layer that is based on two techniques, namely data change detection and the deviation of real observations from their estimated values. The second layer is the data fusion layer. It is based on a minimum square error criterion and fuses the data of the same time domain for specific sensors deployed in a specific area. The proposed approach was implemented using Python and the evaluation of the approach was conducted based on a real-world dataset. The obtained results demonstrate that the proposed approach is efficient in terms of data reduction in comparison with Least Mean Squares filter and Papageorgiou’s (CLONE) method.


Author(s):  
Ritesh Awasthi ◽  
Navneet Kaur

The network across which the information is sensed by the sensor devices and then forwarded to the sink is known as Internet of Things (IoT). Even though this system is deployed in several applications, there are certain issues faced in it due to its dynamic nature. The internet of things is derived from the wireless sensor networks. The sensor nodes which are deployed to sense environmental conditions are very small in size and also deployed on the far places due to which energy consumption is the major issue of internet of things. This research work related to reduce energy consumption of the network so that lifetime can be improved. In the existing system the approach of multilevel clustering is used for the data aggregation to base station. In the approach of multilevel clustering, the whole network is divided into clusters and cluster heads are selected in each cluster. The energy efficient techniques of internet of things are reviewed and analyzed in terms of certain parameters.


Author(s):  
Vishwas D. B. ◽  
Gowtham M. ◽  
Gururaj H. L. ◽  
Sam Goundar

In the era of mechanical digitalization, organizations are progressively putting resources into apparatuses and arrangements that permit their procedures, machines, workers, and even the products themselves to be incorporated into a solitary coordinated system for information assortment, information examination, the assessment of organization advancement, and execution improvement. This chapter presents a reference guide and review for propelling an Industry 4.0 venture from plan to execution, according to base on the economic and scientific policy of European parliament, applying increasingly effective creation forms, and accomplishing better profitability and economies of scale may likewise bring about expanded financial manageability. This chapter present the contextual analysis of a few Industry 4.0 applications. Authors give suggestions coordinating the progression of Industry 4.0. This section briefly portrays the advancement of IIoT 4.0. The change of ubiquitous computing through the internet of things has numerous difficulties related with it.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 1317 ◽  
Author(s):  
Vrince Vimal ◽  
Madhav Ji Nigam

Internet of Things is the mainstay of the new era since its application becomes the future of day-to-day life. This work targets the IoT network assisted by WSN to prevent forest fire. We propose two-layer architecture of sensor network assisted by IoT enabled UAVs. The data flows in the proposed architecture in bottom-up fashion i.e., data is sensed by the nodes, which are deployed in the forest area (and sense temperature continuously). This data is transmitted to upper layer consisting of UAVs, which take appropriate action (to sprinkle water to bring temperature down to prevent fire). All the UAVs are interconnected to each other as well as to base station. The sensor nodes are clustered using two-step clustering algorithm, which takes care of the isolated nodes. The scheme has been equated to another WSN assisted IoT clustering technique. The proposed scheme outperforms the existing in terms of congestion at the UAV stations, number of alive nodes and remaining energy of the network.  


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2048 ◽  
Author(s):  
Mohammed Zaki Hasan ◽  
Hussain Al-Rizzo

The integration of the Internet of Things (IoT) with Wireless Sensor Networks (WSNs) typically involves multihop relaying combined with sophisticated signal processing to serve as an information provider for several applications such as smart grids, industrial, and search-and-rescue operations. These applications entail deploying many sensors in environments that are often random which motivated the study of beamforming using random geometric topologies. This paper introduces a new algorithm for the synthesis of several geometries of Collaborative Beamforming (CB) of virtual sensor antenna arrays with maximum mainlobe and minimum sidelobe levels (SLL) as well as null control using Canonical Swarm Optimization (CPSO) algorithm. The optimal beampattern is achieved by optimizing the current excitation weights for uniform and non-uniform interelement spacings based on the network connectivity of the virtual antenna arrays using a node selection scheme. As compared to conventional beamforming, convex optimization, Genetic Algorithm (GA), and Particle Swarm Optimization (PSO), the proposed CPSO achieves significant reduction in SLL, control of nulls, and increased gain in mainlobe directed towards the desired base station when the node selection technique is implemented with CB.


2012 ◽  
Vol 197 ◽  
pp. 649-655
Author(s):  
Jian Hua Liu ◽  
Wei Qin Tong

Internet of things applications using RFID sensors are a challenging task due to the limited capacity of batteries. Thus, energy efficient updating and maintenance have become more critical design with RFID sensor network. This paper is dedicated to combine energy harvesting and maintenance, sensor network, and resource discovery to develop a rechargeable sensor energy maintenance scheme. To deal with key sensor nodes and low energy path maintenance, the proposed approach consists of the following:(1)key point energy maintenance for RFID sensor through multi-path similarity analysis;(2)path energy maintenance for RFID sink through energy resource discovery. Use case application and simulation results show that the proposed methods reduce key sensor nodes energy maintenance time and energy maintenance path length for sensor nodes energy updating and maintenance.


Author(s):  
Zhiyao Fan ◽  
Tianhong Pan ◽  
Li Ma

In order to increase the management efficiency and decrease the maintenance costs in the traditional dust monitoring system, a novel real-time remote monitoring system using the Internet of Things and cloud server is proposed in this paper. The system includes several sensor nodes, a sink node and Cloud Server. The high-precision dust probe, temperature and humidity sensors, water flow sensors and hydrogen transmitters are integrated together into a sensor node to access the metal polished environmental information. Then, the collected information is transmitted to sink-node using the 2.4G wireless network. The sink-node uploads data to the Cloud Server through the 4G network and TCP Socket. Based on the Browser/Server (B/S) model, a remote monitoring system is developed by using Tencent Cloud Server, C# language, and SQL database. As a result, the on-site metal polishing environmental information is obtained via the App and Web page.


2017 ◽  
Vol 13 (10) ◽  
pp. 21 ◽  
Author(s):  
Xijuan Wang

<p style="margin: 1em 0px;"><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">To realize the remote monitoring and intelligent management of the home environment, intelligent home remote monitoring system is developed based on the Internet of things technology. By using RF transceiver chip and GPRS technology, a smart home system scheme for wireless networks is established. The hardware and software design of sensor nodes and GPRS wireless communication base station is completed. Sensor nodes are used to monitor the acquisition of field data. Based on GPRS technology, the wireless communication base station realizes the uploading of monitoring data. The wireless communication between the node and the base station is realized by radio frequency transceiver chip SI4432. The results show that the system reaches the aim of expected design function. Therefore, it can be concluded that the system can meet the intelligent monitoring of the home environment.</span></span></p>


Sign in / Sign up

Export Citation Format

Share Document