scholarly journals Review of Energy Efficient Techniques of IoT

Author(s):  
Ritesh Awasthi ◽  
Navneet Kaur

The network across which the information is sensed by the sensor devices and then forwarded to the sink is known as Internet of Things (IoT). Even though this system is deployed in several applications, there are certain issues faced in it due to its dynamic nature. The internet of things is derived from the wireless sensor networks. The sensor nodes which are deployed to sense environmental conditions are very small in size and also deployed on the far places due to which energy consumption is the major issue of internet of things. This research work related to reduce energy consumption of the network so that lifetime can be improved. In the existing system the approach of multilevel clustering is used for the data aggregation to base station. In the approach of multilevel clustering, the whole network is divided into clusters and cluster heads are selected in each cluster. The energy efficient techniques of internet of things are reviewed and analyzed in terms of certain parameters.

2020 ◽  
Vol 8 (6) ◽  
pp. 1812-1815

The IOT network is the decentralized type of network which can sense the information and pass it to base station. Due to small size of the sensor nodes, the energy consumption is the major issue of the network. The LEACH is the energy efficient protocol which can divide whole network into fixed size clusters. In each cluster, cluster heads are selected which can transmit data to base station. In this research work, the LEACH protocol is improved to reduce energy consumption of the wireless sensor networks. In the proposed improvement, the cache nodes are deployed which can aggregate data from the cluster heads and then pass data to base station. The simulation of the proposed technique is done in MATLAB and results are compared with the existing approach in terms of certain parameters. It is analyzed that proposed technique performs well as compared to existing technique.


2020 ◽  
pp. 6-10
Author(s):  
Arulanantham D ◽  
Pradeepkumar G ◽  
Palanisamy C ◽  
Dineshkumar Ponnusamy

The Internet of Things (IoT) is an establishment with sensors, base station, gateway, and network servers. IoT is an efficient and intellectual system that minimizes human exertion as well as right to use to real devices. This method also has an autonomous control property by which any device can control without any human collaboration. IoT-based automation has become very reasonable and it has been applied in several sectors such as manufacturing, transport, health care, consumer electronics, etc. In WSN’s smaller energy consumption sensors are expected to run independently for long phases. So much ongoing researches on implementing routing protocols for IoTbased WSNs.Energy consciousness is an essential part of IoT based WSN design issue. Minimalizing Energy consumption is well-thought-out as one of the key principles in the Expansion of routing protocols for the Internet of things. In this paper, we propose a Location based Energy efficient path routing for Internet of things and its applications its sensor position and clustering based finding the shortest path and real time implementation of Arduino based wireless sensor network architecture with the ESP8266 module. Finally, analyze the principles of Location-based energy-efficient routing and performance of QoS parameters, and then implemented automatic gas leakage detection and managing system.


2018 ◽  
Vol 7 (4.15) ◽  
pp. 178
Author(s):  
Komal Memon ◽  
Nafeesa Bohra ◽  
Faisal K Shaikh

There is a great demand of an Underwater Sensor Networks (UWSNs) in applications of water monitoring and offshore exploration. In such applications, network comprises of multiple sensor nodes which are deployed at different locations and depths of water. Sensor nodes perform collective tasks such as data collection and data transmission to other nodes or Base Station (BS). The bottom nodes are located at depth of water, and are not able to communicate directly with the surface level nodes, these nodes require multi-hop communication with appropriate routing protocol. Therefore, an energy efficient routing protocols are used for such scenarios, which is necessary as well as challenging task. As sensors are battery operated devices, which are really problematic to recharge or replace. The error and propagation path delays are high in acoustic channels therefore underwater communication is much effected. Realizing the circumstances, more attention has been given to compare energy efficient routing protocols which comparatively consume low energy and achieve high throughput. This paper, comprises of analysis and comparison of existing UWSN based efficient energy routing protocols. Based upon the analysis and comparison, VBF and DBR have been proposed that fulfill the requirements. The analysis is done on NS-2 and for comparison, the performance metrics which are evaluated are: Packet delivery Ratio (PDR), energy consumption, throughput and average End to End (E2E) delay. The results show that VBF protocol consume very large amount of energy as compared to DBR protocol. Whereas DBR protocol have characteristics like low energy consumption, minimum delay high PDR and high throughput than VBF protocol.  


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yanli Zhu ◽  
Xiaoping Yang ◽  
Yi Hong ◽  
Youfang Leng ◽  
Chuanwen Luo

The low-power wide-area network (LPWAN) technologies, such as LoRa, Sigfox, and NB-IoT, bring new renovation to the wireless communication between end devices in the Internet of things (IoT), which can provide larger coverage and support a large number of IoT devices to connect to the Internet with few gateways. Based on these technologies, we can directly deploy IoT devices on the candidate locations to cover targets or the detection area without considering multihop data transmission to the base station like the traditional wireless sensor networks. In this paper, we investigate the problems of the minimum energy consumption of IoT devices for target coverage through placement and scheduling (MTPS) and minimum energy consumption of IoT devices for area coverage through placement and scheduling (MAPS). In the problems, we consider both the placement and scheduling of IoT devices to monitor all targets (or the whole detection area) such that all targets (or the whole area) are (or is) continuously observed for a certain period of time. The objectives of the problems are to minimize the total energy consumption of the IoT devices. We first, respectively, propose the mathematical models for the MTPS and MAPS problems and prove that they are NP-hard. Then, we study two subproblems of the MTPS problem, minimum location coverage (MLC), and minimum energy consumption scheduling deployment (MESD) and propose an approximation algorithm for each of them. Based on these two subproblems, we propose an approximation algorithm for the MTPS problem. After that, we investigate the minimum location area coverage (MLAC) problem and propose an algorithm for it. Based on the MLAC and MESD problems, we propose an approximation algorithm to solve the MAPS problem. Finally, extensive simulation results are given to further verify the performance of the proposed algorithms.


2019 ◽  
Vol 8 (3) ◽  
pp. 5540-5548

Wireless sensor networks(WSNs) are used to monitor the environment where the networks are deployed. The Lifetime of WSNs can be increased by energy-efficient or energy balancing algorithms. Balanced energy consumption among all nodes is the main issue. In this paper, a new energy-efficient unequal clustering routing protocol (EEUCR) has been presented. In this protocol, the area of the network is divided into the number of rings of unequal size and each ring is further divided into a number of clusters. Rings nearer to the base station(BS) have a smaller area and the area of rings keeps on increasing as the distance from BS increases. This helps to balance the energy consumption among the sensor nodes. The nodes with heterogeneous energy are deployed in the network. Nodes nearer to the base station have higher energy as compared to farther nodes. Static clustering is used but cluster heads(CHs) are not fixed and are elected on the basis of the remaining energy of the sensor node. Simulation results are compared with existing protocols and show improvement in energy consumption, which, in turn, increases the network lifetime of WSN and also balance the energy consumption of sensor node


2020 ◽  
Author(s):  
Arezoo Khatibi ◽  
Omid Khatibi

Abstract We will offer a method to improve energy efficient consumption for processing queries on the Internet of Things. We focused on an energy efficient hierarchical clustering index tree such that we can facilitate time-correlated region queries in the I.o.T (Internet of Things). We try to improve clustering and make a change on its proposed index tree. We try to do this by optimizing the query processing. We improve clustering to increase the accuracy of the Internet of Things and prevent the network from disconnecting. In the article that we have chosen, there is a heterogeneous cluster which means there exists a large data difference in the two ends of a cluster. Also, it often happens that the same information is sent to the base station by two overlapping clusters; therefore, we save energy by eliminating duplicated data.


Bunch specific transducers of Wireless sensor networks (WSN) that give detecting administrations to the Internet of Things gadgets with constrained vitality and capacity assets. Because substitution or energizing of battery in tiny sensor nodes is practically incomprehensible, control utilization winds up one of the critical structure issues in WSN for the future, we proposed a crossbreed directing convention: Advanced Zone-Stable Election Protocol (AZ-SEP) with nature of heterogeneous WSNs for IoT situations. In this convention, a few nodes transmit information legitimately to the base station while some utilization the bunching method to send information to the base station. We actualized AZ-SEP and contrasted it and the customary Low Energy adaptive clustering hierarchy (LEACH). Recreation results demonstrated that Z-SEP improved the steadiness time frame and throughput than existing conventions like LEACH. The proposed AZ-SEP convention outflanks when contrasted with the current LEACH convention with a 64% ascent in better output in the form throughput and broadening the quantity of alive tiny nodes to 2702 rounds which can be utilized to improve the IoT lifetime. At the point when contrasted and other vitality productive conventions, it is discovered that the proposed calculation performs better as far as dependability period and system lifetime in various situations of region, vitality and node density. Thus our simulation result will show enhanced energy, throughput with data aggregation


2016 ◽  
Vol 12 (05) ◽  
pp. 58
Author(s):  
X. Xu ◽  
B. Z. Liu

A wireless sensor network (WSN) is one of the core technologies of the Internet of things. It is an important means to realize a real-time geographic information system. Related research has shown that in the future, tens of billions of sensors and intelligent terminal equipment will be connected to WSNs based on the establishment of the function of the Internet of things. This study presents a heuristic algorithm to balance the energy consumption of each sensor node. It proposes a new real-time dynamic allocation algorithm for sensor tasks based on the concept of this heuristic algorithm and by considering that a multisensory system is composed of a phased-array radar. This allocation algorithm can dynamically assign tasks to the most suitable sensor before tasks fail to arrive, which ensures that the sensor can achieve a good load balance and extend network lifetime. A simulation experiment is conducted, and results validate the proposed algorithm. The energy consumption of mobile sensor nodes is effectively balanced. The path-planning algorithm standardizes the energy consumption of each mobile sensor node across the network , thereby effectively prolonging network lifetime.


2020 ◽  
Vol 12 (1) ◽  
pp. 205-224
Author(s):  
Anshu Kumar Dwivedi DUBEY

Purpose ”“ In the recent scenario, there are various issues related to wireless sensor networks such as clustering, routing, packet loss, network strength. The core functionality of primarily wireless sensor networks is sensor nodes that are randomly scattered over a specific area. The sensor senses the data and sends it to the base station. Energy consumption is an important issue in wireless sensor networks. Clustering and cluster head selection is an important method used to extend the lifetime of wireless sensor networks. The main goal of this research article is to reduce energy consumption using a clustering process such as CH determination, cluster formation, and data dissemination.   Methodology/approach/design ”“ The simulation in this paper was finished utilizing MATLAB programming methodology and the proposed technique is contrasted with the LEACH and MOD-LEACH protocols.   Findings ”“ The simulation results of this research show that the energy consumption and dead node ratio are improved of wireless sensor networks as compared to the LEACH and MOD-LEACH algorithms.   Originality/value ”“ In the wireless sensor network there are various constraints energy is one of them. In order to solve this problem use CH selection algorithms to reduce energy consumption and consequently increase network lifetime.


IoT ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 5-20 ◽  
Author(s):  
Petros Spachos

Precision Agriculture (PA) is an ever-expanding field that takes modern technological advancements and applies it to farming practices to reduce waste and increase output. One advancement that can play a significant role in achieving precision agriculture is wireless technology, and specifically the Internet of Things (IoT) devices. Small, inch scale and low-cost devices can be used to monitor great agricultural areas. In this paper, a system for precision viticulture which uses IoT devices for real-time monitoring is proposed. The different components of the system are programmed properly and the interconnection between them is designed to minimize energy consumption. Wireless sensor nodes measure soil moisture and soil temperature in the field and transmit the information to a base station. If the conditions are optimal for a disease or pest to occur, a drone flies towards the area. When the drone is over the node, pictures are captured and then it returns to the base station for further processing. The feasibility of the system is examined through experimentation in a realistic scenario.


Sign in / Sign up

Export Citation Format

Share Document