Electrospinning of 100% Carboxymethyl Chitosan Nanofibers

2014 ◽  
Vol 9 (1) ◽  
pp. 155892501400900 ◽  
Author(s):  
Negar Sohofi ◽  
Hossein Tavanai ◽  
Mohammad Morshed ◽  
Amir Abdolmaleki

Carboxymethyl chitosan (CMC), one of the most important chitosan derivatives, is synthesized by alkalization of chitosan, followed by carboxymethylation. CMC has higher moisture absorption and moisture retention, higher chelating and sorption abilities as well as better biological properties than chitosan. Polymeric nanofibrous mats produced through electrospinning have high specific surface area and high porosity which are beneficial for various applications. Up to present time, the electrospinning of CMC has only been possible by the addition of polymers such as polyvinyl alcohol or polyethylene oxide. The present study focuses on the electrospinning of 100% CMC. It was found that the solution of CMC (5–6%) in trifluoroacetic acid (TFA) was electrospinnable, producing nanofibers containing some beads. However, adding dichloromethane (DCM) to TFA made the electrospinning uniform, and bead-free CMC nanofibers with an average diameter of 260 nm was possible. This study shows that viscosity and surface tension of the electrospinning solution of CMC plays an important role in making CMC solution electrospinnable.

2011 ◽  
Vol 194-196 ◽  
pp. 648-651 ◽  
Author(s):  
Natthan Charernsriwilaiwat ◽  
Praneet Opanasopit ◽  
Theerasak Rojanarata ◽  
Tanasait Ngawhirunpat

Electrospinning is a technique use to fabricate ultrafine fibers with diameters in the nanometer range. The electrospun fiber mats have high potentials for many applications, due to their high surface area to volume, high porosity and small pore size. In this study, chitosan-ethylenediaminetetraacetic acid (CS-EDTA)/polyvinyl alcohol (PVA) blend nanofibers were successfully prepared using electrospinning techniques without organic solvent. CS was dissolved in EDTA aqueous solution and then blended with PVA solution at various weight ratios. Physicochemical properties of CS-EDTA/PVA solution such as viscosity, conductivity and surface tension were investigated. The morphology and diameter of the electrospun fiber mats were analyzed by using scanning electron microscopy (SEM). The composite structure was characterized by differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FT-IR). SEM images showed that the morphology and diameter of the nanofibers were mainly affected by the weight ratio of the blend. Nanofibers were obtained when the CS-EDTA content was less than 50%wt. The average diameter of the nanofibers was 119-223 nm, and this average diameter decreased with increasing CS-EDTA content. In summary, these CS electrospun nanofiber mats may be proper for the drug delivery or wound dressing application.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jia-Horng Lin ◽  
Chao-Tsang Lu ◽  
Jin-Jia Hu ◽  
Yueh-Sheng Chen ◽  
Chen-Hung Huang ◽  
...  

This study used nonwoven manufacture and electrospinning to create wound dressings with solid mechanical properties and hemostasis function. 10% Polyvinyl alcohol (PVA) and 5%Bletilla striata(BS) were blended into the PVA/BS solution, which can be made into nanomaterial with high specific surface area by electrospinning. The PVA/BS solution was electrospun onto the dressing matrix made of polyester (PET) and absorbent cotton (AC), forming the PVA/BS composite dressings. According to the experiment results, when the volume ratio of PVA to BS was 9 : 1, the resulting dressings had optimal fiber formation, the finest average diameter, and the lowest toxicity.


2008 ◽  
Vol 55-57 ◽  
pp. 321-324 ◽  
Author(s):  
Chieh Yu Chao ◽  
Ching Wen Lou ◽  
Chao Tsang Lu ◽  
Chao Chiung Huang ◽  
Jia Horng Lin

Electrospinning is common used in manufacturing ultrafine fibers from a polymer solution. With a high specific surface area, high porosity and good biocompatibility, the elecrospun membranes have extensive applications as biomaterials such as tissue scaffolds and for drug delivery. Silk fibroins (SF), gelatin (G) both have good biocompatibility and are non-toxic. And in previous literature, gelatin nanofiber can be successfully prepared by electrospinning, which was dissolved in formic acid. Tencel, which is extracted from wood pulp, is biodegradable, has a smooth fiber structure, can protect wounds and is irritation-free. Consequently, SF, G and Tencel are widely used in biomedical applications, such as for wound dressings and scaffolds for tissue engineering and so on. In this study, we discussed the applications of different shapes of electrospun membrane such as film, web. After that, the electrospun membrane was combined with Tencel nonwoven to fabricate composite nonwoven. Electrospinning of SF/ G was performed using formic acid as the spinning solvent. Parameters, such as electrical field (15~11 kV), spinning distance (15~7 cm), and volume ratio of SF and G, were analyzed to investigate their effects on electrospinnability and morphology of nanofiber membranes. The morphology of electrospun SF/ G nanofibers was investigated by scanning electron microscopy (SEM). Analytical demonstrate that the optimal electrospinning condition was fibers with an average diameter of 200–300 nm.


2021 ◽  
pp. 004051752110117
Author(s):  
Zhenzhen Quan ◽  
Yihan Wang ◽  
Jiajun Wu ◽  
Xiaohong Qin ◽  
Jianyong Yu

Electrospun sub-microfiber membrane of cellulose acetate (CA), with excellent biodegradability, high specific surface area and high porosity, has attracted wide attention in various research fields. Even so, the stable continuous electrospinning of CA sub-micro fibers is affected by the solution parameters and CA acetylation degree dramatically, which still remains challenging. In the present work, electrospun CA sub-micro fibrous membranes have been prepared from four distinct solvent systems, respectively, to explore the proper solution parameters for membrane fabrication. After hydrolysis and electrospinning, the produced CA sub-micro fibrous membranes were analyzed in terms of fiber size distribution, hydrophilicity and porosity. Current analysis has shown that the degree of substitution of CA sub-micro fibers decreases with the increase in hydrolysis time, resulting in increased diameter irregularity, decreased average porosity and increased hydrophilicity of the sub-micro fibrous membrane.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 85 ◽  
Author(s):  
Truc Cong Ho ◽  
Jin-Seok Park ◽  
Sung-Yeoul Kim ◽  
Hoyeol Lee ◽  
Ju-Sop Lim ◽  
...  

For tissue engineering applications, biodegradable scaffolds containing high molecular weights (MW) of collagen and sodium alginate have been developed and characterized. However, the properties of low MW collagen-based scaffolds have not been studied in previous research. This work examined the distinctive properties of low MW collagen-based scaffolds with alginate unmodified and modified by subcritical water. Besides, we developed a facile method to cross-link water-soluble scaffolds using glutaraldehyde in an aqueous ethanol solution. The prepared cross-linked scaffolds showed good structural properties with high porosity (~93%) and high cross-linking degree (50–60%). Compared with collagen (6000 Da)-based scaffolds, collagen (25,000 Da)-based scaffolds exhibited higher stability against collagenase degradation and lower weight loss in phosphate buffer pH 7.4. Collagen (25,000 Da)-based scaffolds with modified alginate tended to improve antioxidant capacity compared with scaffolds containing unmodified alginate. Interestingly, in vitro coagulant activity assay demonstrated that collagen (25,000 Da)-based scaffolds with modified alginate (C25-A63 and C25-A21) significantly reduced the clotting time of human plasma compared with scaffolds consisting of unmodified alginate. Although some further investigations need to be done, collagen (25,000 Da)-based scaffolds with modified alginate should be considered as a potential candidate for tissue engineering applications.


2021 ◽  
pp. 51764
Author(s):  
Alireza Akbari ◽  
Shahram Rabbani ◽  
Shiva Irani ◽  
Mojgan Zandi ◽  
Fereshteh Sharifi ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Ling Yu ◽  
Shubin Dou ◽  
Jinghan Ma ◽  
Qiang Gong ◽  
Mogen Zhang ◽  
...  

Antimicrobial peptides (AMPs) are a new class of promising antibacterial agents. We prepared electrospinning chitosan (CS)-polyethylene oxide (PEO) nanofiber membranes containing different concentrations of an antibacterial peptide NP10. The average diameter of nanofibers increased with the total concentration of NP10. The FTIR shows that all the peaks of CS-PEO nanofiber membranes with different concentrations of NP10 were almost the same as those of pure CS-PEO nanofiber membranes, and only the peak intensity changes. Adding NP10 can improve the thermal stability of CS-PEO nanofiber membranes. In the in vitro release experiment, NP10 was released from the CS-PEO-0.5%NP10 nanofiber membrane in a burst first and then slowly and continuously. Simultaneously, the CS-PEO-NP10 nanofiber membrane had good antibacterial activity against Escherichia coli and Staphylococcus aureus and good biocompatibility. In animal wound healing experiments, CS-PEO-0.5%NP10 nanofiber membrane had advantages over gauze and CS-PEO nanofiber membrane in wound healing. These properties may provide a choice for the clinical application of AMPs and treatment of wound infections.


2018 ◽  
Vol 5 (2) ◽  
pp. 296-303
Author(s):  
Josephine Chang Hui Lai ◽  
Nor Liyana Yusof

In this study, the physico-mechanical and morphological properties of polyvinyl alcohol/palm kernel shell/coconut kernel shell elastomeric polymer nanocomposites (PVA/PKS/CKS EPNCs) were investigated. PVA/PKS/CKS EPNCs were prepared via solution casting method and the properties of the elastomeric polymer nanocomposites were characterized through Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), tensile testing and moisture absorption test. Test results showed that increasing the PVA content increased the mechanical properties of elastomeric polymer nanocomposites as well as provided better surface morphology. However, beyond certain percentage of PVA content, the moisture absorption increased too. Therefore, 55wt% of PVA/PKS/CKS EPNCs was chosen as the best elastomeric polymer nanocomposites as it had the best overall properties from the aspect of physico-mechanical, morphological and moisture absorption.


Sign in / Sign up

Export Citation Format

Share Document