Evaluation the Manufacturing Process of Silk/Gelatin Electrospun Membrane

2008 ◽  
Vol 55-57 ◽  
pp. 321-324 ◽  
Author(s):  
Chieh Yu Chao ◽  
Ching Wen Lou ◽  
Chao Tsang Lu ◽  
Chao Chiung Huang ◽  
Jia Horng Lin

Electrospinning is common used in manufacturing ultrafine fibers from a polymer solution. With a high specific surface area, high porosity and good biocompatibility, the elecrospun membranes have extensive applications as biomaterials such as tissue scaffolds and for drug delivery. Silk fibroins (SF), gelatin (G) both have good biocompatibility and are non-toxic. And in previous literature, gelatin nanofiber can be successfully prepared by electrospinning, which was dissolved in formic acid. Tencel, which is extracted from wood pulp, is biodegradable, has a smooth fiber structure, can protect wounds and is irritation-free. Consequently, SF, G and Tencel are widely used in biomedical applications, such as for wound dressings and scaffolds for tissue engineering and so on. In this study, we discussed the applications of different shapes of electrospun membrane such as film, web. After that, the electrospun membrane was combined with Tencel nonwoven to fabricate composite nonwoven. Electrospinning of SF/ G was performed using formic acid as the spinning solvent. Parameters, such as electrical field (15~11 kV), spinning distance (15~7 cm), and volume ratio of SF and G, were analyzed to investigate their effects on electrospinnability and morphology of nanofiber membranes. The morphology of electrospun SF/ G nanofibers was investigated by scanning electron microscopy (SEM). Analytical demonstrate that the optimal electrospinning condition was fibers with an average diameter of 200–300 nm.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jia-Horng Lin ◽  
Chao-Tsang Lu ◽  
Jin-Jia Hu ◽  
Yueh-Sheng Chen ◽  
Chen-Hung Huang ◽  
...  

This study used nonwoven manufacture and electrospinning to create wound dressings with solid mechanical properties and hemostasis function. 10% Polyvinyl alcohol (PVA) and 5%Bletilla striata(BS) were blended into the PVA/BS solution, which can be made into nanomaterial with high specific surface area by electrospinning. The PVA/BS solution was electrospun onto the dressing matrix made of polyester (PET) and absorbent cotton (AC), forming the PVA/BS composite dressings. According to the experiment results, when the volume ratio of PVA to BS was 9 : 1, the resulting dressings had optimal fiber formation, the finest average diameter, and the lowest toxicity.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Ying Zhao ◽  
Yihui Qiu ◽  
Huanhuan Wang ◽  
Yu Chen ◽  
Shaohua Jin ◽  
...  

Renewable polymers have attracted considerable attentions in the last two decades, predominantly due to their environmentally friendly properties, renewability, good biocompatibility, biodegradability, bioactivity, and modifiability. The nanofibers prepared from the renewable polymers can combine the excellent properties of the renewable polymer and nanofiber, such as high specific surface area, high porosity, excellent performances in cell adhesion, migration, proliferation, differentiation, and the analogous physical properties of extracellular matrix. They have been widely used in the fields of wound dressing to promote the wound healing, hemostasis, skin regeneration, and treatment of diabetic ulcers. In the present review, the different methods to prepare the nanofibers from the renewable polymers were introduced. Then the recent progress on preparation and properties of the nanofibers from different renewable polymers or their composites were reviewed; the application of them in the fields of wound dressing was emphasized.


2014 ◽  
Vol 9 (1) ◽  
pp. 155892501400900 ◽  
Author(s):  
Negar Sohofi ◽  
Hossein Tavanai ◽  
Mohammad Morshed ◽  
Amir Abdolmaleki

Carboxymethyl chitosan (CMC), one of the most important chitosan derivatives, is synthesized by alkalization of chitosan, followed by carboxymethylation. CMC has higher moisture absorption and moisture retention, higher chelating and sorption abilities as well as better biological properties than chitosan. Polymeric nanofibrous mats produced through electrospinning have high specific surface area and high porosity which are beneficial for various applications. Up to present time, the electrospinning of CMC has only been possible by the addition of polymers such as polyvinyl alcohol or polyethylene oxide. The present study focuses on the electrospinning of 100% CMC. It was found that the solution of CMC (5–6%) in trifluoroacetic acid (TFA) was electrospinnable, producing nanofibers containing some beads. However, adding dichloromethane (DCM) to TFA made the electrospinning uniform, and bead-free CMC nanofibers with an average diameter of 260 nm was possible. This study shows that viscosity and surface tension of the electrospinning solution of CMC plays an important role in making CMC solution electrospinnable.


2021 ◽  
pp. 152808372110481
Author(s):  
Maryam Mounesan ◽  
Somaye Akbari ◽  
Bogumil E Brycki

The ever-increasing concern of air pollution triggered by broad-spreading contagious disease, bioterrorism, and release of dust particles in the air is targeted to be addressed in this paper by developing a novel personal respiratory equipment (PRE). For this purpose, polyamidoamine dendritic polymers (PAMAMs) were utilized not only for encapsulating tea tree essential oil (TEO), an antimicrobial material, but also for battling against perilous bioaerosols. Furthermore, TEO is encapsulated inside both PAMAM and polyacrylonitrile (PAN) electrospun nanofibers. Results clarified that electrospun samples containing both TEO and PAMAM possess thinner nanofibers with 440 nm reduction in their average diameter, and pursuantly higher filtration efficiency against both NaCl and paraffin oil mist particles about 98% and well above 99%, respectively. Herein, the electrospinning method is employed first for high porosity, enhanced surface area to volume ratio, and interconnected pores of resulted nanofibers, which are strongly useful in capturing the dust and allowing more air to flow and pass through, and creating a good air circulation. Second, the synergistic effect of using both electrospinning and PAMAM as the host molecules is also a promising approach for addressing the volatility of fragrances by producing a controlled release of TEO.


Author(s):  
Khosro Adibkia ◽  
Shadi Yaqoubi ◽  
Solmaz Maleki Dizaj

Nanofibers as a main group of nanoparticles have a vast range of applicability for therapeutic purposes, duo to their outstanding attributes such as very large surface to volume ratio and high porosity. These types of nanoparticles are more known as tissue scaffolds and drug delivery carriers. Nanofiber-based carriers are able to control the release pattern of drugs. In addition, they can act as multidrug-loaded materials with programed dual release profile. Electrospinning is a simple method, which is recognized as the most efficient approach for the fabrication of nanofibers. Production of ultrafine fibers based on various natural or synthetic polymers is possible by means of electrospinning. In this chapter, a comprehensive review is presented on various medical applications of electrospun nanofibers in the case of tissue engineering and drug delivery. Several investigations on therapeutic nanofibers and their processing methods are also summarized in this chapter.


2017 ◽  
pp. 1333-1357
Author(s):  
Khosro Adibkia ◽  
Shadi Yaqoubi ◽  
Solmaz Maleki Dizaj

Nanofibers as a main group of nanoparticles have a vast range of applicability for therapeutic purposes, duo to their outstanding attributes such as very large surface to volume ratio and high porosity. These types of nanoparticles are more known as tissue scaffolds and drug delivery carriers. Nanofiber-based carriers are able to control the release pattern of drugs. In addition, they can act as multidrug-loaded materials with programed dual release profile. Electrospinning is a simple method, which is recognized as the most efficient approach for the fabrication of nanofibers. Production of ultrafine fibers based on various natural or synthetic polymers is possible by means of electrospinning. In this chapter, a comprehensive review is presented on various medical applications of electrospun nanofibers in the case of tissue engineering and drug delivery. Several investigations on therapeutic nanofibers and their processing methods are also summarized in this chapter.


2007 ◽  
Vol 336-338 ◽  
pp. 1703-1706 ◽  
Author(s):  
Xia Deng ◽  
Gang He ◽  
Yun Mao Liao ◽  
Yong Yi Yao ◽  
Zhi Qing Chen ◽  
...  

A three-dimensional biomimetic electrospun scaffold was prepared from a nanohydroxyapatite/ polymer blend in the present study. Viscosity of n-HA/PEA compound solution determined by PEA concentration and additives of n-HA was investigated while other parameters were fixed in the electrospinning process. The fiber diameter increased with the increasing viscosity of solution. 20wt% n-HA in the composite ultrafine fibrous scaffold was proved to be a preferable ratio. The n-HA/PEA scaffold was characterized by XRD, SEM and EDX. The fibrous electrospun scaffold, which is made up of ultrafine fibers with average diameter 400±50 nm and well-interconnected pores, was characterized with high surface–to-volume ratio, which is conducive to cell and tissue growth. A comparatively uniform distribution of n-HA crystals in a single fiber even in the whole scaffold was confirmed by EDX. The biocompatibility of the composite was investigated by culturing osteobalsts on the scaffold. Good cell adhesion and proliferation manner was observed on the fibrous scaffold by SEM and MTT assay. It could be expected that the electrospun HA/PEA composite scaffold would be a potential biomimetic extracellular matrix biomaterial for bone tissue engineering.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2104
Author(s):  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

The management of chronic wounds is challenging. The factors that impede wound healing include malnutrition, diseases (such as diabetes, cancer), and bacterial infection. Most of the presently utilized wound dressing materials suffer from severe limitations, including poor antibacterial and mechanical properties. Wound dressings formulated from the combination of biopolymers and synthetic polymers (i.e., poly (vinyl alcohol) or poly (ε-caprolactone) display interesting properties, including good biocompatibility, improved biodegradation, good mechanical properties and antimicrobial effects, promote tissue regeneration, etc. Formulation of these wound dressings via electrospinning technique is cost-effective, useful for uniform and continuous nanofibers with controllable pore structure, high porosity, excellent swelling capacity, good gaseous exchange, excellent cellular adhesion, and show a good capability to provide moisture and warmth environment for the accelerated wound healing process. Based on the above-mentioned outstanding properties of nanofibers and the unique properties of hybrid wound dressings prepared from poly (vinyl alcohol) and poly (ε-caprolactone), this review reports the in vitro and in vivo outcomes of the reported hybrid nanofibers.


2021 ◽  
pp. 004051752110117
Author(s):  
Zhenzhen Quan ◽  
Yihan Wang ◽  
Jiajun Wu ◽  
Xiaohong Qin ◽  
Jianyong Yu

Electrospun sub-microfiber membrane of cellulose acetate (CA), with excellent biodegradability, high specific surface area and high porosity, has attracted wide attention in various research fields. Even so, the stable continuous electrospinning of CA sub-micro fibers is affected by the solution parameters and CA acetylation degree dramatically, which still remains challenging. In the present work, electrospun CA sub-micro fibrous membranes have been prepared from four distinct solvent systems, respectively, to explore the proper solution parameters for membrane fabrication. After hydrolysis and electrospinning, the produced CA sub-micro fibrous membranes were analyzed in terms of fiber size distribution, hydrophilicity and porosity. Current analysis has shown that the degree of substitution of CA sub-micro fibers decreases with the increase in hydrolysis time, resulting in increased diameter irregularity, decreased average porosity and increased hydrophilicity of the sub-micro fibrous membrane.


Nanophotonics ◽  
2020 ◽  
Vol 9 (15) ◽  
pp. 4497-4503
Author(s):  
Liying Zhang ◽  
Xiangqian Xiu ◽  
Yuewen Li ◽  
Yuxia Zhu ◽  
Xuemei Hua ◽  
...  

AbstractVertically aligned nanowire arrays, with high surface-to-volume ratio and efficient light-trapping absorption, have attracted much attention for photoelectric devices. In this paper, vertical β-Ga2O3 nanowire arrays with an average diameter/height of 110/450 nm have been fabricated by the inductively coupled plasma etching technique. Then a metal-semiconductor-metal structured solar-blind photodetector (PD) has been fabricated by depositing interdigital Ti/Au electrodes on the nanowire arrays. The fabricated β-Ga2O3 nanowire PD exhibits ∼10 times higher photocurrent and responsivity than the corresponding film PD. Moreover, it also possesses a high photocurrent to dark current ratio (Ilight/Idark) of ∼104 and a ultraviolet/visible rejection ratio (R260 nm/R400 nm) of 3.5 × 103 along with millisecond-level photoresponse times.


Sign in / Sign up

Export Citation Format

Share Document