Physical and Mechanical Properties of Nylon 6/ Titanium Dioxide Micro and Nano-Composite Multifilament Yarns

2014 ◽  
Vol 9 (3) ◽  
pp. 155892501400900
Author(s):  
Shima Shayestehfar ◽  
Mohammad Esmail Yazdanshenas ◽  
Ramin Khajavi ◽  
Abo-Saeed Rashidi

In this study, the effect of titanium dioxide particles (TiO2 micro and nano) on the physical and mechanical properties of Nylon 6–based multifilament yarns was investigated. For this reason, master-batches of Nylon 6/TiO2 micro and nano-particles were prepared by melt compounding before spinning and then multifilament composites incorporating 0.03, 0.33, 0.5 and 0.7% TiO2 micro and nano-particles were successfully spun in a melt-spinning machine. Characterization of these composite multifilament yarns was carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray (EDX), and X-ray diffraction (XRD) analysis. Characterization of mechanical strength properties including tenacity and elongation at break of the resultant composites are discussed as a function of filler loading. Through the application of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), it was found that incorporating micro titanium dioxide caused severe aggregation at the nylon fiber surface. By contrast, the diffusion of nano-particles within bulk of multifilament yarns was much more consistent, although aggregation of the titanium dioxide nano-particles still appeared. The results manifested the improvement of mechanical properties of the nano-composites containing TiO2 nano-particles.

Author(s):  
M. Kirn ◽  
M. Rühle ◽  
H. Schmid ◽  
L.J. Gauckler

It is expected that Si-Al-O-N alloys are important high temperature construction materials. The phase diagrams for Si-Al-O-N alloys were studied systematically mainly by X-ray diffraction work (for a summary see). Different stable phases were found. For the understanding of the physical and mechanical properties it is of great interest to know for the different stable phases the microstructure and the morphology, which can be obtained by TEM observations. Results of some TEM studies are reported here utilizing not only the conventional TEM but also the lattice fringe imaging technique.Specimens of the different phases were produced as described in They were prepared for TEM observations. For high resolution work a Siemens ELMISKOP 102 (operating voltage 125 kV) was used fitted with a double tilting stage (± 45°), for conventional TEM studies the specimens were examined in an AEI EM7 high voltage EM operated at 1 MeV.


2013 ◽  
Vol 763 ◽  
pp. 12-16
Author(s):  
Saba Jamil ◽  
Xiao Yan Jing ◽  
Jun Wang ◽  
Song Nan Li ◽  
Jing Yuan Liu

Magnetic Fe3O4 nanobubbles surrounded by nanoparticles are prepared by adopting microwave assisted reflux method. The nanomagnetic particles surrounded by small beads like particles are fabricated by irradiating the prepaperd sample solutions by microwave radiations coupled with reflux method simultaneously at 90°C for 45 mins. The characterization of the prepared Fe3O4 particles are carried out by using x ray diffraction, scanning electron microscopy and transmission electron microscopy. The instrumentations shows the morphology that is thick walled bubble like with approximate diameter of about 300 nm to 400 nm surrounded by small nanoparticles of 5 nm to 30 nm in range. The particles are bubbles like and some broken bubbles showed that these might be hollow from inside.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
K. J. Morrissey

Grain boundaries and interfaces play an important role in determining both physical and mechanical properties of polycrystalline materials. To understand how the structure of interfaces can be controlled to optimize properties, it is necessary to understand and be able to predict their crystal chemistry. Transmission electron microscopy (TEM), analytical electron microscopy (AEM,), and high resolution electron microscopy (HREM) are essential tools for the characterization of the different types of interfaces which exist in ceramic systems. The purpose of this paper is to illustrate some specific areas in which understanding interface structure is important. Interfaces in sintered bodies, materials produced through phase transformation and electronic packaging are discussed.


2020 ◽  
Vol 10 ◽  
pp. 184798042096688
Author(s):  
Galo Cárdenas-Triviño ◽  
Sergio Triviño-Matus

Metal colloids in 2-mercaptoethanol using nanoparticles (NPs) of iron (Fe), cobalt (Co), and nickel (Ni) were prepared by chemical liquid deposition method. Transmission electron microscopy, electron diffraction, UV-VIS spectroscopy, and scanning electron microscopy with electron dispersive X-ray spectroscopy characterized the resulting colloidal dispersions. The NPs exhibited sizes with ranges from 9.8 nm for Fe, 3.7 nm for Co, and 7.2 nm for Ni. The electron diffraction shows the presence of the metals in its elemental state Fe (0), Co (0), and Ni (0) and also some compounds FeO (OH), CoCo2S4, and NiNi2S4.


2018 ◽  
Vol 170 ◽  
pp. 03030 ◽  
Author(s):  
Rustem Mukhametrakhimov ◽  
Liliya Lukmanova

The paper studies features of the hydration process of the modified blended cement for fiber cement panels (FCP) using differential thermal analysis, X-ray diffraction analysis, electron microscopy and infrared spectroscopy. It is found that deeper hydration process in silicate phase, denser and finer crystalline structure form in fiber cement matrix based on the modified blended cement. Generalization of this result to the case of fiber cement panels makes it possible to achieve formation of a denser and homogeneous structure with increased physical and mechanical properties.


1995 ◽  
Vol 418 ◽  
Author(s):  
J. Forbes ◽  
J. Davis ◽  
C. Wong

AbstractThe detonation of explosives typically creates 100's of kbar pressures and 1000's K temperatures. These pressures and temperatures last for only a fraction of a microsecond as the products expand. Nucleation and growth of crystalline materials can occur under these conditions. Recovery of these materials is difficult but can occur in some circumstances. This paper describes the detonation synthesis facility, recovery of nano-size diamond, and plans to synthesize other nano-size materials by modifying the chemical composition of explosive compounds. The characterization of nano-size diamonds by transmission electron microscopy and electron diffraction, X-ray diffraction and Raman spectroscopy will also be reported.


2003 ◽  
Vol 18 (5) ◽  
pp. 1123-1130 ◽  
Author(s):  
V. Oliveira ◽  
R. Vilar

This paper aims to contribute to the understanding of column formation mechanisms in Al2O3–TiC ceramics micromachined using excimer lasers. Chemical and structural characterization of columns grown in Al2O3–TiC composite processed with 200 KrF laser pulses at 10 J/cm2 was carried out by scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction analysis. Fully developed columns consist of a core of unprocessed material surrounded by an outer layer of Al2TiO5, formed in oxidizing conditions, and an inner layer, formed in reducing conditions, composed of TiC and Al3Ti or an AlTi solid solution. Possible mechanisms of column formation are discussed.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2012 ◽  
Vol 186 ◽  
pp. 212-215
Author(s):  
Jacek Krawczyk ◽  
Włodzimierz Bogdanowicz ◽  
Grzegorz Dercz ◽  
Wojciech Gurdziel

Microstructure of terminal area of Al65Cu32.9Co2.1ingots (numbers indicate at.%), obtained via directional solidification was studied. Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray powder diffraction were applied. Point microanalysis by Scanning Electron Microscope was used for examination of chemical compositions of alloy phases. It was found that tetragonal θ phase of Al2Cu stoichiometric formula was the dominate phase (matrix). Additionally the alloy contained orthogonal set of nanofibres of Al7Cu2Co T phase with the average diameter of 50-500 nm and oval areas of hexagonal Al3(Cu,Co)2H-phase, surrounded by monoclinic AlCu η1phase rim. Inside some areas of H-phase cores of decagonal quasicrystalline D phase were observed.


Sign in / Sign up

Export Citation Format

Share Document