Prediction of Certain Low Stress Mechanical Properties of Knitted Fabrics from Their Structural Parameters

2015 ◽  
Vol 10 (2) ◽  
pp. 155892501501000
Author(s):  
R. Varadaraju ◽  
J. Srinivasan

Knitted fabrics are preferred as clothing materials because of of their outstanding comfort quality. 16 plain knitted fabric samples were produced from 4 combed ring spun yarn of linear densities 29.5 Tex, 23.6, Tex 19.7 Tex and 17.4 Tex and 4 different stitch lengths from each yarn linear density were selected for this study. The fabric samples were relaxed and then tested for tensile shear and bending properties using Kawabata tester's. KES- FB1and KES- FB2. The effect of various fabric structural parameters on fabric low stress mechanical properties was studied. The fabric shear rigidity, bending rigidity, shear hysteresis, bending hysteresis, and tensile linearity were positively correlated with the fabric GSM, thickness, and tightness factor and negatively correlated with fabric linear Stitch modulus, areal stitch modulus, volume stitch modulus, and porosity. The fabric tensile elongation was positively correlated with the fabric linear stitch modulus, areal stitch modulus, volume Stitch modulus, and porosity and negatively correlated with the fabric GSM, thickness, and fabric tightness factor. The above properties were higher in course direction than in wale direction. Separate prediction equations were developed for fabric low stress mechanical properties from Tightness factor, Volume Stitch modulus, and Porosity

2019 ◽  
Vol 89 (23-24) ◽  
pp. 4842-4857 ◽  
Author(s):  
Nazli Uren ◽  
Ayse Okur

Despite the fact that the tactile comfort of a garment is an important criterion that determines consumers' preferences and has been investigated for almost a century by many researchers, the number of studies regarding tactile comfort of denim fabrics is limited. The aim of this study is to propose suggestions to enhance the tactile comfort of denim fabrics and investigate their efficiency in terms of low-stress mechanical properties and sensory evaluation results. For this purpose, the compressibility, extension ability, bending rigidity and shear rigidity of 51 denim fabrics were experimentally determined. Meanwhile, stiffness–softness, roughness–smoothness and tactile comfort scores were evaluated by consumers and specialists via sensory tests. The effects of the raw material, blend ratio, weaving parameters and washing processes were statistically investigated. Low-stress mechanical properties, particularly biaxial and multiaxial ones, were found to be highly related to the perceived tactile comfort. Statistical investigations highlighted that stone washing is the most effective method to improve the tactile comfort. Nonetheless, the effect of enzyme washing was relatively small. It was observed that the suggested weaving parameters provide a significant improvement in fabric properties. Increasing the ratio of viscose content in polyester/viscose blend weft yarns was quite effective as well.


2016 ◽  
Vol 88 (5) ◽  
pp. 499-509 ◽  
Author(s):  
Saeed Shaikhzadeh Najar ◽  
Xungai Wang ◽  
Maryam Naebe

The effects of atmospheric pressure plasma treatment and the tightness factor on the low-stress mechanical properties of weft-knitted wool fabrics were evaluated using the Kawabata Evaluation System for Fabric (KES-F). The statistical analysis showed that the plasma treatment and the tightness factor had significant effects on the fabric low-stress mechanical properties ( p-value < 0.05). Plasma-treated fabrics showed significantly higher bending and shear rigidity and hysteresis, compression energy, thickness, compressibility, surface friction and lower compression resilience and geometrical roughness values compared with untreated fabrics. An increase in the fabric tightness factor significantly increased fabric thickness, bending and shear rigidity and hysteresis, and decreased tensile extensibility and geometrical roughness. The relationship between primary handle attributes evaluated by Wool HandleMeter and KES-F mechanical properties was also investigated. The results confirmed a highly linear correlation between these two sets of data, where rough/smooth and hard/soft attributes evaluated by the Wool HandleMeter had the highest correlation with bending rigidity, shear properties and bending hysteresis, as measured by the KES-F.


2019 ◽  
Vol 31 (3) ◽  
pp. 403-414
Author(s):  
Md Samsu Alam ◽  
Abhijit Majumdar ◽  
Anindya Ghosh

Purpose Bending and shear rigidities of woven fabrics depend on fibre, yarn and fabric-related parameters. However, there is lack of research efforts to understand how bending and shear rigidities change in woven fabrics having similar areal density. The purpose of this paper is to investigate the change in bending and shear rigidities in plain woven fabrics having similar areal density. Design/methodology/approach A total of 18 fabrics were woven (9 each for 100 per cent cotton and 100 per cent polyester) keeping the areal density same. Yarns of 20, 30 and 40 Ne were used in warp and weft wise directions and fabric sett was adjusted to attain the desired areal density. Findings When warp yarns become finer, keeping weft yarns same, bending rigidity remains unchanged but shear rigidity increases in warp wise direction. When weft yarns are made finer, keeping the warp yarns same, both the bending and shear rigidities of fabric increase in warp wise direction. Similar results for fabric bending and shear rigidities were obtained in transpose direction. There is a strong association between fabric shear rigidity and number of interlacement points per unit area of fabric even when fabric areal density is same. Originality/value Very limited research has been reported on the low-stress mechanical properties of woven fabrics having similar areal density. A novel attempt has been made in this research work to investigate the bending and shear rigidities of woven fabrics having similar areal density. Besides, it has been shown that it is possible to design a set of woven fabrics having similar bending rigidity but different shear rigidity.


2016 ◽  
Vol 88 (4) ◽  
pp. 467-479 ◽  
Author(s):  
Ka-yan Yim ◽  
Chi-wai Kan

Fabric hand is an indispensable characteristic for the selection of fabric and product development and the buying consideration for manufacturers and consumers. However, there is little comprehensive work on the hand feel property of warp-knitted fabrics due to the mainstream natural fibers (cotton, wool and silk) and other fabric structures (woven, weft-knitted and nonwoven). The increasing potential for the wide variety of applications and development of warp-knitted fabrics is not only because its fabric hand gives better determination for fabric marketing, but also because it provides extensive scope for fabric performance and appearance. This paper reports an experimental study on the integrated fabric hand behavior of a series of warp-knitted fabrics made for various apparel applications, such as sportswear, lingerie and leisure wear. These 105 fabrics were produced by varying different physical parameters, including fabric weight and fabric thickness. The Kawabata Evaluation System for Fabric (KES-F) was employed to obtain the fabric hand properties (primary hand value and total hand value) related with stiffness, smoothness and softness. All low-stress mechanical properties and fabric hand values from the testing results were used to verify the applicability of the KES-F on warp-knitted fabrics and to analyze the relationships of fabric parameters and hand characteristics. The results indicate that the KES-F is an appropriate tool to measure the hand attributes of warp-knitted samples, and moderate correlations between physical properties and mechanical behavior were found.


2015 ◽  
Vol 10 (2) ◽  
pp. 155892501501000 ◽  
Author(s):  
Akbar Khoddami ◽  
Soheil Bazanjani ◽  
R.H. Gong

The effects of fluorocarbon finishing of hollow and solid polyester/wool were studied in order to establish the processing behavior and performance characteristics of the treated fabrics. Polyester/wool blended fabrics before and after dyeing were treated with different fluorochemicals; their liquid repellency after washing and dry cleaning was evaluated. Fabric mechanical properties were compared by measuring tensile strength and low stress mechanical properties. The results indicate that the finishing agent formulation has a great effect on the fabrics repellent properties. Studying the fluorocarbon chain re-orientation during laundering and dry cleaning revealed that each fluorocarbon has different ability to retrieve its original configuration via air drying with subsequent necessity of hot pressing to reach acceptable repellency. Also, the effect of hollow fibers on fabric mechanical properties is practically insignificant. The low stress mechanical properties indicate only relatively small differences among the samples. However, finishing with all chemicals and methods resulted in higher friction between the fibers and yarns, and in increased bending and shear rigidity, and shear hysteresis.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wardah Anam ◽  
Khurram Shehzad Akhtar ◽  
Faheem Ahmad ◽  
Abher Rasheed ◽  
Abher Rasheed ◽  
...  

Purpose The purpose of this study was to produce yarns from three different spinning techniques, i.e.Murata Vortex Spinning (MVS) ring spinning and rotor spinning. Those yarns were then used to produce fabrics. Then, the effect of silicone softener on tactile comfort of fabric was investigated. Design/methodology/approach Three different yarns, i.e. Ring, Rotor and MVS yarns, were used to make fabrics using CCI sample loom which were then subjected to post treatments like desizing, scouring and bleaching. After the completion of the dyeing process, silicone-based softener was used to improve the hand feel of fabrics. The structures of three yarns were evaluated using Scanning electron microscopy. The fabrics were evaluated against compression, bending and surface properties using Kawabata evaluation system. Findings The fabric made of MVS yarn depicted more geometrical roughness, coefficient of friction and bending rigidity but less compressibility as compared to fabrics made with other yarns. It was observed that softener concentration has a direct relationship with thickness and bending rigidity of the fabric, and inverse relationship with coefficient of friction and geometrical roughness of the fabric. Originality/value MVS yarn has some superior properties over rotor and ring spun yarn like high production rates, high resistance to pilling, clear appearance and stability against deformation but has disadvantage that it has less compressibility. Therefore, softener is applied on the fabric, to address this issue, so that it could also be used for apparels application.


2017 ◽  
Vol 29 (6) ◽  
pp. 754-767 ◽  
Author(s):  
Kumar K.V. ◽  
Sampath V.R. ◽  
Prakash C.

Purpose Air permeability of knitted fabrics is normally measured for the samples in their unstretched state. But, this air permeability values indicate the ability of these garments to allow air through them when they are not in use. But, the real-time condition is different and certainly the knitted garments mentioned above will subject to a degree of stretch during their usage. So, the measurement of air permeability under stretch and the fabric properties which would influence the air permeability of weft-knitted fabrics in their stretched state is of paramount importance. The paper aims to discuss these issues. Design/methodology/approach The aim of this research work is to investigate the change in air permeability values under the incremental extension of cotton tubular weft-knitted fabrics produced from the yarns of different spinning systems. Findings From the results, it is evident that the pique fabric samples of compact spun yarn displayed the highest air permeability values during the incremental stretch at all the three relaxation states. It is followed by the pique samples of ring spun yarn. Next to pique samples, the jersey samples made from the compact yarn and ring spun yarn revealed more air permeability, respectively. The core spun pique samples and core spun jersey samples displayed the least air permeability values, respectively. But, the pique and jersey samples made up of ring yarn and compact yarn showed gradual reduction in their air permeability towards the incremental stretch and the core spun pique samples and core spun jersey samples were uniformly seen with gradual increase in their air permeability during the incremental stretch. Originality/value Very limited quantity of research has been carried out in this area. So, a novel attempt has been made in this research work to investigate the influence of incremental stretch on air permeability of single knit structures.


2019 ◽  
pp. 1-8 ◽  
Author(s):  
Shikha Bajaj ◽  
Sandeep Bains

Fabric handle is one of the influential properties for any fabric and is a guiding factor for optimum selection of textile materials for specific end uses. The paper deals with objective analysis of knitted fabrics for fabric hand. Present attempt was made on four knitted fabrics, blended in proportions of 50% mulberry silk: 50% viscose and 40% mulberry silk: 60% viscose, each in two different counts. Fabric Assurance by Simple Testing (FAST) was utilized for determination of properties which is precisely associated with apparel construction and its lastingness.  Fabric samples were subjected to tests for obtainment of dimensional stability, formability, low load extensibility, bending rigidity, compression and shear rigidity. Knitted fabric blended in proportion of 50% mulberry silk: 50% viscose in 20 Nm count was found to be most feasible to large scale production and garment construction.


Sign in / Sign up

Export Citation Format

Share Document