Optimization of Knitted Fabric Comfort and UV Protection using Desirability Function

2016 ◽  
Vol 11 (4) ◽  
pp. 155892501601100 ◽  
Author(s):  
Anindya Ghosh ◽  
Prithwiraj Mal ◽  
Abhijit Majumdar ◽  
Debmalya Banerjee

The present study deals with the optimization of multiple quality parameters of single jersey and 1×1 rib knitted fabrics using the desirability function approach. Comfort properties such as air permeability, thermal conductivity and safety properties such as UV protection are combined to yield an ‘overall desirability’ varying from zero to one. The overall desirability has been maximized versus target values for air permeability, thermal conductivity and UV resistance. Experimental validation confirms that the proposed method can be used to design a knitted fabric with desired comfort and UV resistance characteristics.

2013 ◽  
Vol 821-822 ◽  
pp. 411-414
Author(s):  
Yu Xiu Yan ◽  
Yan Na Feng ◽  
Xiu Yin Wang ◽  
Jing Jin ◽  
Jian Wei Tao

Most of UV protection textiles are made of chemical fibers, and a large part of them have poor air permeability and moisture permeability, which influences the wearing comfort. This work blended polyester and linen to produce a new kind of knitted fabric and tested the fabric structures, air permeability, moisture permeability and UV value. Excel and SPSS were used to compare the properties of new knitted fabrics and find out the relationships between the constructional parameters and properties. The results indicated that there are regression equations between constructional parameters and properties and got a new kind of UV protection fabric with good air permeability and moisture permeability.


2012 ◽  
Vol 184-185 ◽  
pp. 1090-1093 ◽  
Author(s):  
Jia Horng Lin ◽  
Ching Wen Lin ◽  
Chin Mei Lin ◽  
Yi Chang Yang ◽  
Ting Ting Li ◽  
...  

In recent years, as improvement of human living life, people begin to focus on themselves health. It is certain that bamboo charcoal has many properties, including water purification, deodorization, anion release and far-infrared ray radiation. This study aims to prepare PET/BC warp-knitted fabric composed of polyester yarn (PET) as warp yarn and bamboo charcoal polyamine yarn (BC) as weft yarn using Velcro Crochet Machine. Afterwards, air permeability, elastic resilience and far-infrared ray emissivity of resulting knitted fabric were discussed by changing weft yarn type. Result shows that, for knitted fabrics, weft yarn type cannot affect the elastic resilience; yet PET weft yarn makes air permeability decreasing.


2019 ◽  
Vol 2 (3) ◽  
pp. 317-323
Author(s):  
Mehmet Erdem İnce

The fact that weft knitted fabrics has a stretchable, 3D, porous and interlocking structure makes them unique when manufactured from high performance fibers. Knitted fabrics with different architectures exhibit different properties. Different loop forms like tuck and skip stitches with various loop lengths reveal different physical and mechanical properties. Literature review indicated that wisely arrangement of tuck stitches within the pattern repeat alter the weft-knitted fabric structure from natural and synthetic fibers. Therefore, we studied the effect of number and location of tuck stiches on air permeability of weft-knitted fabrics from glass yarn. Single-bed, flat weft knitting machine was used to knit fabrics with different architectures from three-ply glass yarn. The nominal single-end count of used E-glass yarn was 136 tex. It is anticipated that the number and location of tuck stitches within knit pattern effect physical and air permeability properties of weft-knitted fabrics from glass yarn.


2021 ◽  
Vol 64 (2) ◽  
pp. 63-65
Author(s):  
Ganesh S. Kakad ◽  
Ramchandra P. Sawant

This paper deals with thermo-physiological and sensorial comfort properties of knitted fabric samples manufactured from standard polyester (PET) and Coolmax (multi-lobal PET fiber) yarn by The Lycra Company, Wilmington, DE/USA. 18 knitted fabric samples were prepared by using PET and Coolmax. These samples were tested for qmax property related to warm/cool feeling, water-vapor transmission rate and air permeability. The results were analyzed statistically, and it was shown that fabric material used yarn to manufacture knitted samples, i.e. PET and Coolmax, has a significant effect on qmax, water-vapor transmission rate and air permeability of knitted fabric samples used in this study.


2015 ◽  
Vol 10 (3) ◽  
pp. 155892501501000
Author(s):  
Uzair Hussain ◽  
Samee Irshad ◽  
Wardah Anam ◽  
Hammad Abbasi ◽  
Faheem Ahmed ◽  
...  

The research reports the results and investigations made on 20/1 cotton hosiery yarn and knitted fabric to evaluate the effect of different conditioning methods on the mechanical and comfort properties of yarn and fabric, namely, bursting strength, moisture management, thermal conductivity, air permeability, skewness, stiffness, and pilling. The fibers spun on a ring spinning system were investigated as yarn according to ASTM standards. From the results it is concluded that the knitted fabric made from machine conditioning has better mechanical and comfort properties than fabric made through unconditioned and room conditioned yarns.


2016 ◽  
Vol 28 (3) ◽  
pp. 328-339 ◽  
Author(s):  
Rajesh Mishra ◽  
Arumugam Veerakumar ◽  
Jiri Militky

Purpose – The purpose of this paper is to investigate effect of material properties in 3D knitted fabrics on thermo-physiological comfort. Design/methodology/approach – In the present study six different spacer fabrics were developed. Among these six fabrics, it was classified into two groups for convenient analysis of results, the first group has been developed using polyester/polypropylene blend with three different proportion and second group with polyester/polypropylene/lycra blend having another three different composition. As a spacer yarn, three different types of 88 dtex polyester monofilament yarn and polyester multifilament yarns (167 dtex and 14.5 tex) were used and 14.5 tex polypropylene and 44 dtex lycra multifilament yarns were also used for the face and back side of the spacer fabrics (Table I). These fabrics were developed in Syntax Pvt Ltd Czech Republic. Findings – The main influence on the water vapour permeability of warp knitted spacer fabrics is the kind of raw material, i.e. fibre wetting and wicking. Also there is no correlation between air permeability and water vapour permeability. It is found that both air permeability and thermal conductivity are closely related to the fabric density. It is also found that the fabric characteristics of spacer fabric show a very significant effect on the air permeability, thermal conductivity and mechanical properties of spacer fabric. Therefore, selection of spacer fabric for winter clothing according to its fabric characteristics. Practical implications – The main objective of the present study is to produce spacer knitted 3D fabrics suitable for defined climatic conditions to be used as clothing or in sports goods. Originality/value – New 3D knitted spacer fabrics can be produced with improved comfort properties.


2017 ◽  
Vol 17 (2) ◽  
pp. 152-163 ◽  
Author(s):  
Anindya Ghosh ◽  
Prithwiraj Mal ◽  
Abhijit Majumdar ◽  
Debamalya Banerjee

Abstract Knitted fabrics have excellent comfort properties because of their typical porous structure. Different comfort properties of knitted fabrics such as air permeability, thermal absorptivity, and thermal conductivity depend on the properties of raw material and knitting parameters. In this paper, an investigation was done to observe the effect of yarn count, loop length, knitting speed, and yarn input tension in the presence of two uncontrollable noise factors on selected comfort properties of single jersey and 1×1 rib knitted fabrics using the Taguchi experimental design. The results show that yarn count and loop length have significant influence on the thermo-physiological comfort properties of knitted fabrics.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Mukesh Kumar Singh ◽  
Akansha Nigam

Comfort performance of woven structures made of various types of ring spun yarns like carded, combed, and compact spun yarns has been reported in the present study. Carded, combed, and compact spun yarns are entirely different in structure in terms of fibre migration inside the yarn body, level of free space inside the yarn, number of hairs, and length of hairs on yarn surfaces. In this study, 197 dtex and 144 dtex (30s Ne and 40s Ne) ring spun combed yarns are used as a warp. The same cotton mixing was used to manufacture 30s Ne and 40s Ne carded, combed, and compact yarns. Both 30s and 40s Ne linear density yarns were prepared by all three carded, combed, and compact yarn manufacturing routes. The structure of fibre strand in filling yarn has a great impact on comfort related properties, that is, thermal conductivity, , air permeability, wicking, and moisture vapour permeability.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1879
Author(s):  
Thet Khaing Aung ◽  
Hiroshi Churei ◽  
Gen Tanabe ◽  
Rio Kinjo ◽  
Kaito Togawa ◽  
...  

Sports face guards (FGs) are devices that protect athletes from maxillofacial injury or ensure rapid return to play following orofacial damage. Conventional FGs are uncomfortable to wear owing to stuffiness caused by poor ventilation and often slip off due to increase in weight due to absorption of moisture from perspiration, lowering players’ performance. Herein, combinations of 3D-printed perforated acrylonitrile butadiene styrene (ABS) polymer sheets and 3D-knitted fabrics with honeycomb structures as cushioning materials were investigated to balance better wearing feel and mechanical properties. The flexural strength, weight, and shock absorption ability of, and air flow rate through, the ABS sheets with five different perforation patterns were evaluated and compared with those of conventional FG materials comprising a combination of polycaprolactone sheets for the medical splint and polychloroprene rubber for the cushioning material. The ABS sheets having 10% open area and 2.52 mm round holes, combined with knitted fabric cushioning, exhibited the requisite shock absorbing, higher air permeability, and lower weight properties than the conventional materials. Our results suggest that FGs fabricated using combinations of 3D-printed perforated ABS polymer sheets and 3D-knitted fabrics with honeycomb structures may impart enhanced wearing comfort for athletes.


2019 ◽  
pp. 152808371987881
Author(s):  
Vaida Buzaite ◽  
Reazuddin MD Repon ◽  
Daiva Milasiene ◽  
Daiva Mikucioniene

The main goal of the presented study was to develop new multi-layered weft-knitted structure for thermal insulation and to investigate the dynamic of the heat transfer through this fabric. For knitting of outer and inner layers of this structure, different raw materials of yarns were used, i.e. wool, cotton, polyester and acrylic yarns. All the newly developed multi-layered weft-knitted fabrics show thermal insulation as, after 1 h of observation, temperature on the outer layer of all tested fabrics does not reach 40℃, i.e. the temperature of a heated plate. The results of this research showed that the nature of the yarns has a significant influence on the air permeability and dynamic of the heat exchange through the multi-layered structure, as it influences porosity of the knitted fabric. The results showed that the best fabric was the one where the outer layers are knitted from woollen yarns and the inner layer from polyester filament yarns.


Sign in / Sign up

Export Citation Format

Share Document