scholarly journals Chicken Feather as a Fiber Source for Nonwoven Insulation

1999 ◽  
Vol os-8 (1) ◽  
pp. 1558925099OS-80
Author(s):  
Weiqin Ye ◽  
Roy M. Broughton ◽  
Joseph B. Hess

“Raw” chicken feathers directly from a processing plant were washed with detergent and dried. Cleaned feathers were mechanically worked to separate fibrous material from the quills and ultimately classified into two components: a fibrous material suitable for further textile processing, and a residue containing large feathers and pieces of quill. The chicken feather fiber was blended with binder fiber (sheath/core construction) and made into nonwoven batting. The battings show effective insulating properties when compared with other battings made from goose down and polyester fiber.

2021 ◽  
Vol 5 (6) ◽  
pp. 1857-1866
Author(s):  
Epsita Kar ◽  
Moumita Barman ◽  
Soumen Das ◽  
Ankita Das ◽  
Pallab Datta ◽  
...  

We report the prototype fabrication of a flexible, biocompatible bio-piezoelectric energy harvester using keratin-enriched chicken feathers.


ASTONJADRO ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 162
Author(s):  
Sutarno Sutarno ◽  
Diah Rahmawati ◽  
Hendra Masvika

<p>The materials that are often used in the world of construction both in bridges, water structures, and buildings is concrete. The characteristic of concrete is that it is strong withstand compressive forces, but weak in resisting tensile forces. Therefore, it is necessary to improve the characteristics of the concrete. Improving the characteristics of the concrete can be done by applying a fiber mixture to the concrete. There are two types of fibers used as a concrete mixture, namely synthetic fibers and natural fibers. The research conducted was concrete using chicken feather waste fiber which was categorized as natural fiber with a fiber length of 3 cm, the grade of the concrete used was 20 MPa and the percentage of additional chicken feather waste was 0%, 1%, and 2% of the volume of concrete. The test is the compressive strength and flexural strength of the concrete using a specimen cylinder 15x30 cm and beam 15x15x60 cm. Each percentage of chicken feather waste that is used as a concrete mixture is 5 samples. From the test results, it was found that the concrete with the addition of 0% chicken feathers obtained an average compressive strength value of 200.78 kg/cm<sup>2</sup>, concrete with the addition of 1% chicken feather fiber, the compressive strength value increased to 215.09 kg/cm<sup>2</sup> and concrete with the addition of chicken feather fiber 2 % has a compressive strength value of 197.54 kg/cm<sup>2</sup>. Meanwhile, the flexural strength values obtained were 24.00 kg/cm<sup>2</sup>, 23.03 kg/cm<sup>2</sup>, 21.08 kg/cm<sup>2</sup> for the percentage of 0%, 1% and 2% fibers, respectively. This shows that the concrete with the addition of bristle fibers the chicken has decreased the compressive strength value when it has reached its optimum level. While the addition of the percentage of chicken feathers to the flexural strength value does not have much effect on the flexural strength of the concrete which tends to decrease. This is influenced by the characteristics of the chicken feathers which are difficult to bond with the concrete as well as being easy to absorb water, so that the concrete takes a longer time to dry after the maintenance of the concrete.</p>


2007 ◽  
Vol 4 (1) ◽  
pp. 35-48 ◽  
Author(s):  
Jerrold E. Winandy ◽  
James H. Muehl ◽  
Jessie A. Glaeser ◽  
Walter Schmidt

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Sanjay Mavinkere Rangappa ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin ◽  
Mohammad Jawaid ◽  
Togay Ozbakkaloglu

AbstractIn this work, fillers of waste chicken feather and abundantly available lignocellulose Ceiba Pentandra bark fibers were used as reinforcement with Biopoxy matrix to produce the sustainable composites. The aim of this work was to evaluate the mechanical, thermal, dimensional stability, and morphological performance of waste chicken feather fiber/Ceiba Pentandra bark fiber filler as potential reinforcement in carbon fabric-layered bioepoxy hybrid composites intended for engineering applications. These composites were prepared by a simple, low cost and user-friendly fabrication methods. The mechanical (tensile, flexural, impact, hardness), dimensional stability, thermal stability, and morphological properties of composites were characterized. The Ceiba Pentandra bark fiber filler-reinforced carbon fabric-layered bioepoxy hybrid composites display better mechanical performance compared to chicken feather fiber/Ceiba Pentandra bark fiber reinforced carbon fabrics layered bioepoxy hybrid composites. The Scanning electron micrographs indicated that the composites exhibited good adhesion at the interface of the reinforcement material and matrix system. The thermogravimetric studies revealed that the composites possess multiple degradation steps, however, they are stable up to 300 °C. The thermos-mechanical studies showed good dimensional stability of the composites. Both studied composites display better thermal and mechanical performance compared to neat bioepoxy or non-bioepoxy thermosets and are suitable for semi-structural applications.


Sign in / Sign up

Export Citation Format

Share Document