scholarly journals Effects of Breastfeeding on the Baby and on Its Immune System

1996 ◽  
Vol 17 (4) ◽  
pp. 1-5 ◽  
Author(s):  
Lars A. Hanson ◽  
Ursula Wiedermann ◽  
Rifat Ashraf ◽  
Shakila Zaman ◽  
Ingegrad Adlerberth ◽  
...  

Human milk is a very complex fluid with a number of components and multiple functions. New functions are continually being identified. It is clear that human milk can affect the immune system of the breasfed infant. This results both in enhanced vaccine responses and, at times, down-regulation of other immune reactivities, such as transplant rejection and the risk of developing certain immunologic diseases, such as type I diabetes. Breastfeeding presumably gives the infant the possibility for an optimal immune response by providing good nutrition, including a decreased risk of vitamin A deficiency. The control of the intestinal flora and the anti-inflammatory effects of maternal milk also increase the possibilities for an adequate immune response in the infant. Further study is needed of the roles of idiotypic and anti-idiotypic antibodies, growth factors, cytokines, and various anti-inflammatory factors in the maternal milk in the infant's host defence.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tian-Yu Lei ◽  
Ying-Ze Ye ◽  
Xi-Qun Zhu ◽  
Daniel Smerin ◽  
Li-Juan Gu ◽  
...  

AbstractThrough considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.


2021 ◽  
Author(s):  
Raphaël Jami ◽  
Emilie Mérour ◽  
Julie Bernard ◽  
Annie Lamoureux ◽  
Jean K. Millet ◽  
...  

Salmonid alphavirus (SAV) is an atypical alphavirus, which has a considerable impact on salmon and trout farms. Unlike other alphaviruses such as the chikungunya virus, SAV is transmitted without an arthropod vector, and does not cause cell shut-off during infection. The mechanisms by which SAV escapes the host immune system remain unknown. By studying the role of SAV proteins on the RIG-I signaling cascade, the first line of defense of the immune system during infection, we demonstrated that non-structural protein 2 (nsP2) effectively blocks the induction of type I interferon (IFN). This inhibition, independent of the protease activity carried by nsP2, occurs downstream of IRF3 which is the transcription factor allowing the activation of the IFN promoter and its expression. The inhibitory effect of nsP2 on the RIG-I pathway depends on the localization of nsP2 in the host cell nucleus which is linked to two nuclear localization sequences (NLS) located in its C-terminal part. The C-terminal domain of nsP2 by itself is sufficient and necessary to block IFN induction. Mutation of the NLS of nsP2 is deleterious to the virus. Finally, nsP2 does not interact with IRF3, indicating that its action is possible through a targeted interaction within discrete areas of chromatin, as suggested by its punctate distribution observed in the nucleus. These results therefore demonstrate a major role for nsP2 in the control by SAV of the host cell’s innate immune response. Importance The global consumption of fish continues to rise and the future demand cannot be met by capture fisheries alone due to limited stocks of wild fish. Aquaculture is currently the world’s fastest growing food production sector with an annual growth rate of 6-8 %. Recurrent outbreaks of SAV result in significant economic losses with serious environmental consequences on wild stocks. While the clinical and pathological signs of SAV infection are fairly well known, the molecular mechanisms involved are poorly described. In the present study, we focus on the non-structural protein nsP2 and characterize a specific domain containing nuclear localization sequences that are critical for the inhibition of the host innate immune response mediated by the RIG-I pathway.


1993 ◽  
Vol 33 ◽  
pp. S76-S76
Author(s):  
T A Stewart ◽  
B Hultgren ◽  
X Huang ◽  
S Pitts-Meek ◽  
J Hully ◽  
...  
Keyword(s):  

2002 ◽  
Vol 61 (3) ◽  
pp. 397-400 ◽  
Author(s):  
Ram Reifen

Vitamin A is necessary for normal differentiation of epithelial tissues, the visual process and reproduction, and is vital for the optimal maintenance and functioning of the innate and adaptive immune system. Vitamin A deficiency is one of the most profuse nutritional deficiencies worldwide. It is associated with increased susceptibility to infectious diseases in both man and animal models. Vitamin A also has a role as an anti-inflammatory agent. Supplementation with vitamin A has been found to be beneficial in a number of inflammatory conditions, including skin disorders such as acne vulgaris, broncho-pulmonary dysplasia and some forms of precancerous and cancer states. The present review suggests that vitamin A deficiency induces inflammation and aggravates existing inflammatory states. Supplementation with vitamin A in selected cases could ameliorate inflammation. The two main mechanisms which appear to be involved in the prevention of disease are the effects of vitamin A on the immune system and the effect on epithelial integrity.


2016 ◽  
Vol 62 (6) ◽  
pp. 584-593 ◽  
Author(s):  
Patricia Palmeira ◽  
Magda Carneiro-Sampaio

Summary In the critical phase of immunological immaturity of the newborn, particularly for the immune system of mucous membranes, infants receive large amounts of bioactive components through colostrum and breast milk. Colostrum is the most potent natural immune booster known to science. Breastfeeding protects infants against infections mainly via secretory IgA (SIgA) antibodies, but also via other various bioactive factors. It is striking that the defense factors of human milk function without causing inflammation; some components are even anti-inflammatory. Protection against infections has been well evidenced during lactation against, e.g., acute and prolonged diarrhea, respiratory tract infections, including otitis media, urinary tract infection, neonatal septicemia, and necrotizing enterocolitis. The milk’s immunity content changes over time. In the early stages of lactation, IgA, anti-inflammatory factors and, more likely, immunologically active cells provide additional support for the immature immune system of the neonate. After this period, breast milk continues to adapt extraordinarily to the infant’s ontogeny and needs regarding immune protection and nutrition. The need to encourage breastfeeding is therefore justifiable, at least during the first 6 months of life, when the infant’s secretory IgA production is insignificant.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1315
Author(s):  
Paweł Bryniarski ◽  
Katarzyna Nazimek ◽  
Janusz Marcinkiewicz

In this review, diuretics and their immunomodulatory functions are described. The effects on the immune response of this group of drugs are reported in patients suffering from hypertension and under experimental conditions involving animal models and cell line studies. The pathogenesis of hypertension is strongly connected to chronic inflammation. The vast majority of diuretics modulate the immune response, changing it in favor of the anti-inflammatory response, but depending on the drug, these effects may differ. This topic is significantly important in medical practice regarding the treatment of patients who have coexisting diseases with chronic inflammatory pathogenesis, including hypertension or chronic heart failure. In patients with metabolic syndrome, allergies, or autoimmune disorders, the anti-inflammatory effect is favorable, because of the overstimulation of their immune system. Otherwise, in the geriatric population, it is important to find the proper anti- and pro-inflammatory balance to avoid an enhancement of immune response suppression, which can result in reducing the risk of serious infections that can occur due to the age-diminished function of the immune system. This article is intended to facilitate the selection of an antihypertensive drug that depends on the patient’s immune situation.


2020 ◽  
Author(s):  
Nigeer Te ◽  
Jordi Rodon ◽  
Maria Ballester ◽  
Mónica Pérez ◽  
Lola Pailler-García ◽  
...  

ABSTRACTWhile MERS-CoV (Middle East respiratory syndrome Coronavirus) provokes a lethal disease in humans, camelids, the main virus reservoir, are asymptomatic carriers, suggesting a crucial role for innate immune responses in controlling the infection. Experimentally infected camelids clear infectious virus within one week and mount an effective adaptive immune response. Here, transcription of immune response genes was monitored in the respiratory tract of MERS-CoV infected alpacas. Concomitant to the peak of infection, occurring at 2 days post inoculation (dpi), type I and III interferons (IFNs) were maximally transcribed only in the nasal mucosa of alpacas, provoking the induction of interferon stimulated genes (ISGs) along the whole respiratory tract. Simultaneous to mild focal infiltration of leukocytes in nasal mucosa and submucosa, upregulation of the anti-inflammatory cytokine IL10 and dampened transcription of pro-inflammatory genes under NF-κB control were observed. In the lung, early (1 dpi) transcription of chemokines (CCL2 and CCL3) correlated with a transient accumulation of mainly mononuclear leukocytes. A tight regulation of IFNs in lungs with expression of ISGs and controlled inflammatory responses, might contribute to virus clearance without causing tissue damage. Thus, the nasal mucosa, the main target of MERS-CoV in camelids, is central in driving an efficient innate immune response based on triggering ISGs as well as the dual anti-inflammatory effects of type III IFNs and IL10.IMPORTANCEMiddle East respiratory syndrome coronavirus (MERS-CoV) is the etiological agent of a respiratory disease causing high mortality in humans. In camelids, the main MERS-CoV reservoir host, viral infection leads to subclinical disease. Our study describes transcriptional regulations of innate immunological pathways underlying asymptomatic clinical manifestations of alpacas in response to MERS-CoV. Concomitant to the peak of infection, these animals elicited a strong transient interferon response and induction of the anti-inflammatory cytokine IL10 in the nasal mucosa. This was associated to a dimmed regulation of pro-inflammatory cytokines and induction of interferon stimulated genes along the whole respiratory mucosa, leading to the rapid clearance of the virus. Thus, innate immune responses occurring in the nasal mucosa appear to be the key in controlling MERS-CoV disease by avoiding a cytokine storm. Understanding on how asymptomatic host reservoirs counteract MERS-CoV infection will aid in the development of antiviral drugs and vaccines.


2020 ◽  
Author(s):  
Nigeer Te ◽  
Jordi Rodon ◽  
Maria Ballester ◽  
Mónica Pérez ◽  
Lola Pailler-García ◽  
...  

AbstractWhile MERS-CoV (Middle East respiratory syndrome Coronavirus) provokes a lethal disease in humans, camelids, the main virus reservoir, are asymptomatic carriers, suggesting a crucial role for innate immune responses in controlling the infection. Experimentally infected camelids clear infectious virus within one week and mount an effective adaptive immune response. Here, transcription of immune response genes was monitored in the respiratory tract of MERS-CoV infected alpacas. Concomitant to the peak of infection, occurring at 2 days post inoculation (dpi), type I and III interferons (IFNs) were maximally transcribed only in the nasal mucosa of alpacas, provoking the induction of interferon stimulated genes (ISGs) along the whole respiratory tract. Simultaneous to mild focal infiltration of leukocytes in nasal mucosa and submucosa, upregulation of the anti-inflammatory cytokine IL10 and dampened transcription of pro-inflammatory genes under NF-κB control were observed. In the lung, early (1 dpi) transcription of chemokines (CCL2 and CCL3) correlated with a transient accumulation of mainly mononuclear leukocytes. A tight regulation of IFNs in lungs with expression of ISGs and controlled inflammatory responses, might contribute to virus clearance without causing tissue damage. Thus, the nasal mucosa, the main target of MERS-CoV in camelids, is central in driving an efficient innate immune response based on triggering ISGs as well as the dual anti-inflammatory effects of type III IFNs and IL10.Author summaryMiddle East respiratory syndrome coronavirus (MERS-CoV) is the etiological agent of a respiratory disease causing high mortality in humans. In camelids, the main MERS-CoV reservoir host, viral infection leads to subclinical disease. Our study describes transcriptional regulations of innate immunological pathways underlying asymptomatic clinical manifestations of alpacas in response to MERS-CoV. Concomitant to the peak of infection, these animals elicited a strong transient interferon response and induction of the anti-inflammatory cytokine IL10 in the nasal mucosa. This was associated to a dimmed regulation of pro-inflammatory cytokines and induction of interferon stimulated genes along the whole respiratory mucosa, leading to the rapid clearance of the virus. Thus, innate immune responses occurring in the nasal mucosa appear to be the key in controlling MERS-CoV disease by avoiding a cytokine storm. Understanding on how asymptomatic host reservoirs counteract MERS-CoV infection will aid in the development of antiviral drugs and vaccines.


Sign in / Sign up

Export Citation Format

Share Document