scholarly journals Investigation on the impact-contact between droplet and rough surface in mechanical polishing using atomic modeling method

2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771040
Author(s):  
Xuesong Han ◽  
Heming Ding

Investigation on the mechanism of impact-contact occurred at multiphase interface is of great importance in technique control of mechanical polishing as it is the basic dynamic process connected with mass transfer and interfacial pressure. Classical continuum mechanics is not fit for study the physical essence of complex dynamic behavior in the impact-spreading at nano length scale because of the small thickness of fluid film and the discrete property of surface morphology. Molecular dynamics method has already been proved to be one of the most efficient toolkit on atomic scale discrete phenomenon and thus being employed in this research to study the complex mechanism of nano-scale impact-spreading. The study shows that the liquid film behaves like a stretched membrane under the unbalanced forces and the real traverse spreading is an anisotropic process resulted by the anisotropic surface structure which also influences the nonuniform distribution of film. The result justifies that boundary lubrication at the interface is resulted by poor spreading behavior on rough surface and will affect the transportation of abrasive particle and materials removal rate. The results also justify that the mechanical similarity can be difficult to hold because of the complexity of surface texture (rough surface) and the different contour profiles resulted by random movement of molecule. Furthermore, energy distribution shows that physical adsorption plays an important role in the impact-contact process which is also justified by the adsorption structure of water. With the increasing of impact velocity, part of outer molecules breaks away the constraints generated by the surface tension and forming a free-state water layer.

2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Elon J. Terrell ◽  
C. Fred Higgs

Chemical mechanical polishing (CMP) is a manufacturing process that is commonly used to planarize integrated circuits and other small-scale devices during fabrication. Although a number of models have been formulated, which focus on specific aspects of the CMP process, these models typically do not integrate all of the predominant mechanical aspects of CMP into a single framework. Additionally, the use of empirical fitting parameters decreases the generality of existing predictive CMP models. Therefore, the focus of this study is to develop an integrated computational modeling approach that incorporates the key physics behind CMP without using empirical fitting parameters. CMP consists of the interplay of four key tribological phenomena—fluid mechanics, particle dynamics, contact mechanics, and resulting wear. When these physical phenomena are all actively engaged in a sliding contact, the authors call this particle-augmented mixed lubrication (PAML). By considering all of the PAML phenomena in modeling particle-induced wear (or material removal), this model was able to predict wear-in silico from a measured surface topography during CMP. The predicted material removal rate (MRR) was compared with experimental measurements of copper CMP. A series of parametric studies were also conducted in order to predict the effects of varying slurry properties such as solid fraction and abrasive particle size. The results from the model are promising and suggest that a tribological framework is in place for developing a generalized first-principle PAML modeling approach for predicting CMP.


2013 ◽  
Vol 797 ◽  
pp. 284-290 ◽  
Author(s):  
Jiang Ting Zhu ◽  
Jia Bin Lu ◽  
Ji Sheng Pan ◽  
Qiu Sheng Yan ◽  
Xi Peng Xu

The growth of epitaxial layer of SiC wafer requires the surface of SiC substrate to reach an atomic scale accuracy. To solve the problems of low machining efficiency and low surface accuracy in the polishing process of SiC wafer, a novel ultra-precision machining method based on the synergistic effect of chemical reaction and flexible mechanical removal of the magnetorheological (MR) effect, the MR-chemical mechanical polishing (MRCMP) is proposed. In this technique, magnetic particles, abrasives and chemical additives are used as MR-chemical polishing fluid to form a cluster MR-effect flexible polishing platen under an applied magnetic field, and it is expected to realize an atomic scale ultra-smooth surface planarization with good controllability and high material removal rate by using the flexible polishing platen. Polishing experimental results of C surface of 6H-SiC crystal substrate indicate that an atomic scale zero-defect surface can be obtained. The surface roughness of C surface of SiC wafer decreased from 50.86nm to 0.42nm and the material removal rate was 98nm/min when SiC wafer was polished for 60 minutes.


Author(s):  
N. D. Browning ◽  
M. M. McGibbon ◽  
M. F. Chisholm ◽  
S. J. Pennycook

The recent development of the Z-contrast imaging technique for the VG HB501 UX dedicated STEM, has added a high-resolution imaging facility to a microscope used mainly for microanalysis. This imaging technique not only provides a high-resolution reference image, but as it can be performed simultaneously with electron energy loss spectroscopy (EELS), can be used to position the electron probe at the atomic scale. The spatial resolution of both the image and the energy loss spectrum can be identical, and in principle limited only by the 2.2 Å probe size of the microscope. There now exists, therefore, the possibility to perform chemical analysis of materials on the scale of single atomic columns or planes.In order to achieve atomic resolution energy loss spectroscopy, the range over which a fast electron can cause a particular excitation event, must be less than the interatomic spacing. This range is described classically by the impact parameter, b, which ranges from ~10 Å for the low loss region of the spectrum to <1Å for the core losses.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5824
Author(s):  
Weronika Czepułkowska-Pawlak ◽  
Emilia Wołowiec-Korecka ◽  
Leszek Klimek

Abrasive blasting is a process widely used in dentistry. One of the uses is the development of metal surfaces for connections with ceramics in fixed prosthetic restorations. The purpose of this paper was to check how the rough surface profile (width, height, and depth on unevenness) impacts the surface’s condition, like its wettability and percentage of stuck abrasives. The Ni-Cr alloy surface was abrasive blasted by silicon carbide with the various pressure parameters (0.2, 0.4, and 0.6 MPa) and abrasive particle sizes (50, 110, and 250 µm). Cleaned surfaces were examined for roughness, wettability, and percentage of stuck abrasive particles on the surface. The surface after abrasive blasting using 110 µm of abrasive size and 0.4 MPa pressure has the best wettability results. The width of unevenness may cause it. When the unevenness has too small or too large width and depth, the fluids may not cover the entire cavities because of locking the air. The surface condition of dental alloys directly affects metal–ceramic connection strength. The knowledge about the impact of the abrasive blasting parameters on the bond strength will allow one to create durable dental restorations.


2015 ◽  
Vol 813-814 ◽  
pp. 634-640
Author(s):  
N.K. Francis ◽  
K.G. Viswanadhan ◽  
M.M. Paulose

Swirling Fluidized Bed Polishing (SFBP) is a non–traditional alternative abrasive flow surface finishing form of Fluidized Bed Machining (FBM) in which the former has special features to overcome certain significant limitations of the latter, namely the variation of the surface roughness vertically along the component surface and the screening effect owing to the complex contours in the work piece geometry. Owing to its ability to perform machining and generate polished surface from a roughness value of Ra 1.2μ to 0.2 μ within 8 hours of processing, this new method offers greater scope in the surface modification of rough machined surfaces with complex geometry such as component with ducts and grooves. This research focus on investigating the effect of abrasive particle concentration on metal removal rate per unit area of the specimen surface. 3D surface morphology analysis investigates the quality of the polished surface and the study of circumferential uniformity and machining accuracy analysis on a complex-contoured component further investigate its scope and relevance in industrial applications.


2008 ◽  
Vol 600-603 ◽  
pp. 831-834 ◽  
Author(s):  
Joon Ho An ◽  
Gi Sub Lee ◽  
Won Jae Lee ◽  
Byoung Chul Shin ◽  
Jung Doo Seo ◽  
...  

2inch 6H-SiC (0001) wafers were sliced from the ingot grown by a conventional physical vapor transport (PVT) method using an abrasive multi-wire saw. While sliced SiC wafers lapped by a slurry with 1~9㎛ diamond particles had a mean height (Ra) value of 40nm, wafers after the final mechanical polishing using the slurry of 0.1㎛ diamond particles exhibited Ra of 4Å. In this study, we focused on investigation into the effect of the slurry type of chemical mechanical polishing (CMP) on the material removal rate of SiC materials and the change in surface roughness by adding abrasives and oxidizer to conventional KOH-based colloidal silica slurry. The nano-sized diamond slurry (average grain size of 25nm) added in KOH-based colloidal silica slurry resulted in a material removal rate (MRR) of 0.07mg/hr and the Ra of 1.811Å. The addition of oxidizer (NaOCl) in the nano-size diamond and KOH based colloidal silica slurry was proven to improve the CMP characteristics for SiC wafer, having a MRR of 0.3mg/hr and Ra of 1.087Å.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3211
Author(s):  
Min Li ◽  
Jasim M. Mahdi ◽  
Hayder I. Mohammed ◽  
Dmitry Olegovich Bokov ◽  
Mustafa Z. Mahmoud ◽  
...  

Thermal energy storage is an important component in energy units to decrease the gap between energy supply and demand. Free convection and the locations of the tubes carrying the heat-transfer fluid (HTF) have a significant influence on both the energy discharging potential and the buoyancy effect during the solidification mode. In the present study, the impact of the tube position was examined during the discharging process. Liquid-fraction evolution and energy removal rate with thermo-fluid contour profiles were used to examine the performance of the unit. Heat exchanger tubes are proposed with different numbers and positions in the unit for various cases including uniform and non-uniform tubes distribution. The results show that moving the HTF tubes to medium positions along the vertical direction is relatively better for enhancing the solidification of PCM with multiple HTF tubes. Repositioning of the HTF tubes on the left side of the unit can slightly improve the heat removal rate by about 0.2 in the case of p5-u-1 and decreases by 1.6% in the case of p5-u-2. It was found also that increasing the distance between the tubes in the vertical direction has a detrimental effect on the PCM solidification mode. Replacing the HTF tubes on the left side of the unit negatively reduces the heat removal rate by about 1.2 and 4.4%, respectively. Further, decreasing the HTF temperature from 15 °C to 10 and 5 °C can increase the heat removal rate by around 7 and 16%, respectively. This paper indicates that the specific concern to the HTF tube arrangement should be made to improve the discharging process attending free convection impact in phase change heat storage.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hosni Idrissi ◽  
Matteo Ghidelli ◽  
Armand Béché ◽  
Stuart Turner ◽  
Sébastien Gravier ◽  
...  

Abstract The fundamental plasticity mechanisms in thin freestanding Zr65Ni35 metallic glass films are investigated in order to unravel the origin of an outstanding strength/ductility balance. The deformation process is homogenous until fracture with no evidence of catastrophic shear banding. The creep/relaxation behaviour of the films was characterized by on-chip tensile testing, revealing an activation volume in the range 100–200 Å3. Advanced high-resolution transmission electron microscopy imaging and spectroscopy exhibit a very fine glassy nanostructure with well-defined dense Ni-rich clusters embedded in Zr-rich clusters of lower atomic density and a ~2–3 nm characteristic length scale. Nanobeam electron diffraction analysis reveals that the accumulation of plastic deformation at room-temperature correlates with monotonously increasing disruption of the local atomic order. These results provide experimental evidences of the dynamics of shear transformation zones activation in metallic glasses. The impact of the nanoscale structural heterogeneities on the mechanical properties including the rate dependent behaviour is discussed, shedding new light on the governing plasticity mechanisms in metallic glasses with initially heterogeneous atomic arrangement.


Sign in / Sign up

Export Citation Format

Share Document