scholarly journals A study on the influence of pick geometry on rock cutting based on full-scale cutting test and simulation

2020 ◽  
Vol 12 (12) ◽  
pp. 168781402097449
Author(s):  
Xuefeng Li

In this paper, series of full-scale cutting tests and cutting simulations are carried out to investigate the influence of installation parameter and geometry of the pick on cutting performance. The discrete element method is used to simulate the rock cutting process. A general process to calibrate macro properties of rock including uniaxial compressive strength (UCS), elastic modulus, Poisson’s ratio, cohesion and internal friction angle is proposed and used to complete the calibration of coal model. The cutting simulations are performed using picks with different tip angles and rake angles. The results show that the peak cutting force (PCF) decreases with the increase of rake angle following an inverse proportional function when the rake angle is positive, while it varies following a parabolic curve in the condition of negative rake angle. Moreover, the crack mode changes from primarily shear failure to primarily tensile failure with the increase of rake angle. Finally, a multiple-attribute index is proposed to evaluate the cutting performance and select the optimum cutting parameters.

2020 ◽  
Vol 8 (10) ◽  
pp. 806
Author(s):  
Yiping Ouyang ◽  
Qi Yang ◽  
Xinquan Chen ◽  
Yongfu Xu

Cutter suction dredgers are important pieces of rock excavation equipment in port and waterway construction. It is valuable but difficult to properly estimate the cutting force on the chisel pick of the cutter suction dredger. In this paper, an analytical model, called the crushed zone expansion induced tensile failure model (CEIT model), is proposed for rock cutting with a chisel pick in order to predict the peak cutting force (Fc) more accurately. First, a review of the existing models for rock cutting with a chisel pick is presented. Next, based on the tensile breakage theory, cavity expansion theory and some hypotheses, the mathematical formula of the CEIT model is obtained. Different from that in the previous models, the effect of the rock on both sides of the chisel pick on Fc, defined as the sidewall effect is considered in the CEIT model. Then, the predicted Fc by the CEIT model is compared with the predicted Fc by existing theoretical models and experimental results to check the validity of the CEIT model. The results show that the CEIT model can well capture the relationships of Fc to the cutting parameters, including cutting width, cutting depth, and rake angle, and can predict the experimental results much better than the existing models. Finally, the sidewall effect and its influence factors according to the CEIT model are discussed.


2019 ◽  
Vol 6 (5) ◽  
pp. 190116 ◽  
Author(s):  
Si-fei Liu ◽  
Shuai-feng Lu ◽  
Zhi-jun Wan ◽  
Jing-yi Cheng

Rock damage is one of the key factors in the design and model choice of mining machinery. In this paper, the influence of rock damage on rock fragmentation and cutting performance was studied using PFC 2D . In PFC 2D software, it is feasible to get rock models with different damage factors by reducing the effective modulus, tensile and shear strength of bond by using the proportional factors. A linear relationship was obtained between the proportion factor and damage factor. Furthermore, numerical simulations of rock cutting with different damage factors were carried out. The results show that with the increase of damage factor, the rock cutting failure mode changes from tensile failure to brittle failure, accompanied by the propagation of macro cracks, the formation of large debris and a notable decrease in the peak cutting force. The mean cutting force is negatively correlated with the damage factor. Besides this, the instability of cutting force was evaluated by the fluctuation index and the pulse number of unit displacement. It was found that the cutting force was quite stable when the damage factor was 0.3, which improves the reliability of cutting machines. Finally, the cutting energy consumption of rock cutting with different damage factors was analysed. The results reveal that an increase of damage factor can raise the rock cutting efficiency. The aforementioned findings play a significant role in the development of assisted rock-breaking technologies and the design of cutting head layout of mining machinery.


2022 ◽  
Vol 122 ◽  
pp. 104366
Author(s):  
Biao Li ◽  
Bo Zhang ◽  
Mengmeng Hu ◽  
Bin Liu ◽  
Wenzheng Cao ◽  
...  

2010 ◽  
Vol 156-157 ◽  
pp. 1425-1429 ◽  
Author(s):  
Hai Yan Zhu ◽  
Qing You Liu ◽  
Xiao Hua Xiao ◽  
Jia Jia Jing

In order to reveal the physical mechanism of air hammer drilling process, using the finite element methods (FEM), a three-dimensional (3D) contact model of full-scale bit, full-scale teeth and rock is established by using free meshing method. We use a Mohr-Coulomb type material model to describe when and how rock fails, and a triangular wave to replace the stress wave. Using the finite element analysis software (ANSYS), the 3D contact analysis of the bit, teeth and rock is carried out. The results show that: aggressive tensile failure may be primarily responsible for rock breakage in air hammer drilling, while compressive failure (or shear failure) may only contribute as a minor player; the distribution of the fragmentation dents can be used to verify the rationality of tooth arrangement; the larger tooth-hole stress of the outside rows mainly responses for the bit failure, while the larger tooth stress of the inside rows contributes as a secondary factor. The results are further calibrated with a series of field applications and research results.


Author(s):  
Pradeep L. Menezes ◽  
Michael R. Lovell

Mechanical rock cutting is a process encountered in different engineering applications including rock excavation, mining and deep oil well drilling. Rock mechanical properties vary with depth in the subsurface and also at different geographical locations due to different environmental conditions. Understanding of fragmentation mechanisms in specific rock materials allows the determination of optimum cutting parameters that improve cutting efficiency and increase tool life during cutting operations. In the present investigation, numerical models that accurately predict the rock fragmentation and stress profiles in the rock slab during cutting were developed using the explicit finite-element method (FEM). In the numerical models, a damage material model was utilized to capture the rock fragmentation process and a rigid steel cutter (at different rake angles) was displaced at different velocities against a stationary rock slab. Rock slabs with significantly different mechanical properties were incorporated with a constant friction factor and a cutting depth of 1 mm. The variation of cutting forces and stresses, and fragmentation of the rock slab were analyzed. The simulation results indicated that the explicit FEM is a powerful tool for simulating rock cutting as the formation of fragments were distinctly observed at different cutting conditions. The rock mechanical properties and tool rake angle were found to have the most significant effect on the rock fragmentation during cutting operations. The cutting forces were also influenced by mechanical properties of the rock and tool rake angle.


2021 ◽  
Vol 9 (7) ◽  
pp. 1457
Author(s):  
Julia Hassa ◽  
Johanna Klang ◽  
Dirk Benndorf ◽  
Marcel Pohl ◽  
Benedikt Hülsemann ◽  
...  

There are almost 9500 biogas plants in Germany, which are predominantly operated with energy crops and residues from livestock husbandry over the last two decades. In the future, biogas plants must be enabled to use a much broader range of input materials in a flexible and demand-oriented manner. Hence, the microbial communities will be exposed to frequently varying process conditions, while an overall stable process must be ensured. To accompany this transition, there is the need to better understand how biogas microbiomes respond to management measures and how these responses affect the process efficiency. Therefore, 67 microbiomes originating from 49 agricultural, full-scale biogas plants were taxonomically investigated by 16S rRNA gene amplicon sequencing. These microbiomes were separated into three distinct clusters and one group of outliers, which are characterized by a specific distribution of 253 indicative taxa and their relative abundances. These indicative taxa seem to be adapted to specific process conditions which result from a different biogas plant operation. Based on these results, it seems to be possible to deduce/assess the general process condition of a biogas digester based solely on the microbiome structure, in particular on the distribution of specific indicative taxa, and without knowing the corresponding operational and chemical process parameters. Perspectively, this could allow the development of detection systems and advanced process models considering the microbial diversity.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Zhenguo Lu ◽  
Lirong Wan ◽  
Qingliang Zeng ◽  
Xin Zhang ◽  
Kuidong Gao

In order to overcome conical pick wear in the traditional rock cutting method, a new cutting method was proposed on account of increasing free surface of the rock. The mechanical model of rock plate bending under concentrated force was established, and the first fracture position was given. The comparison between experimental and numerical results indicated that the numerical method is effective. A computer code LS-DYNA (3D) was employed to study the cutting performance of a conical pick. To study the rock size influenced on the cutting performance, the numerical simulations with different thickness, width, and height of a rock plate was carried out. The numerical simulation with the different cutting parameters of cutting speed, cutting angle, and cutting position influenced on cutting performance was also carried out. The numerical results indicated that the peak force increased with the increasing thickness of rock plate. With the increasing width and height of the rock plate, the peak force decreased and then became stable. Besides, the peak force decreased with the increasing of cutting position lxp/lx. Moreover, the peak force increased and then decreased with the increasing of cutting angle. The cutting speed has nonsignificant influence on the peak force. The strong exponential relationship was obtained between the peak force and cutting position, thickness, height, and width of the rock plate at a confidence level of 0.95. A binomial relationship was observed between the peak force and cutting angel. The cutting force comparison between traditional rock cutting and rock plate cutting indicated that the new cutting method can effectively reduce peak cutting force.


1952 ◽  
Vol 19 (1) ◽  
pp. 54-56
Author(s):  
F. A. McClintock

Abstract A statistical analysis is developed to show how a microscopic shear failure can result in the apparent tensile failure of polycrystalline iron in rotary bending fatigue tests.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Chi Yao ◽  
Sizhi Zeng ◽  
Jianhua Yang

Anisotropy in strength and deformation of rock mass induced by bedding planes and interlayered structures is a vital problem in rock mechanics and rock engineering. The modified rigid block spring method (RBSM), initially proposed for modeling of isotropic rock, is extended to study the failure process of interlayered rocks under compression with different confining pressures. The modified rigid block spring method is used to simulate the initiation and propagation of microcracks. The Mohr–Coulomb criterion is employed to determine shear failure events and the tensile strength criterion for tensile failure events. Rock materials are replaced by an assembly of Voronoi-based polygonal blocks. To explicitly simulate structural planes and for automatic mesh generation, a multistep point insertion procedure is proposed. A typical experiment on interlayered rocks in literature is simulated using the proposed model. Effects of the orientation of bedding planes with regard to the loading direction on the failure mechanism and strength anisotropy are emphasized. Results indicate that the modified RBSM model succeeds in capturing main failure mechanisms and strength anisotropy induced by interlayered structures and different confining pressures.


2011 ◽  
Vol 99-100 ◽  
pp. 370-374 ◽  
Author(s):  
Yue Hong Qian ◽  
Ting Ting Cheng ◽  
Xiang Ming Cao ◽  
Chun Ming Song

During excavating the problem of unloading is a dynamic one essentially. Assuming the unloading ruled by a simple function and based on the Hamilton principal, the distribution of the stress field nearby the tunnel is obtained. The characteristics of the failure nearby the tunnel are analyzed considering the shear failure and tensile failure. The results show that the main mode of the shear failure, intact and tensile failure occurs from the tunnel. The characteristic of the shear failure, intact and tensile failure are one of the likely failure modes.


Sign in / Sign up

Export Citation Format

Share Document